A note on homotopy extension KKM type maps

被引:0
|
作者
O'Regan, Donal [1 ]
机构
[1] Univ Galway, Sch Math & Stat Sci, Galway, Ireland
关键词
Fixed points; Set-valued maps; Coincidence theory; FIXED-POINT THEORY; GENERAL CLASSES; MULTIFUNCTIONS; THEOREMS;
D O I
10.1007/s00010-024-01081-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present a variety of continuation (homotopy) theorems for general classes of maps in the literature.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] A NOTE ON FIXED POINT THEORY FOR KKM SELF MAPS ON EXTENSION TYPE SPACES
    O'Regan, Donal
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2023, 24 (12) : 2657 - 2666
  • [2] Note on KKM maps and applications
    Chen, Y. Q.
    Cho, Y. J.
    Kim, J. K.
    Lee, B. S.
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2006, 2006 (1)
  • [3] Note on KKM maps and applications
    YQ Chen
    YJ Cho
    JK Kim
    BS Lee
    [J]. Fixed Point Theory and Applications, 2006
  • [4] HOMOTOPY EXTENSION TYPE MAPS AND FIXED POINTS
    O'Regan, Donal
    [J]. DYNAMIC SYSTEMS AND APPLICATIONS, 2010, 19 (02): : 375 - 381
  • [5] A NOTE ON COINCIDENCE THEOREMS AND KKM MAPS
    CHITRA, A
    SUBRAHMANYAM, PV
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1986, 17 (10): : 1248 - 1252
  • [6] Homotopy invariants of covers and KKM-type lemmas
    Musin, Oleg R.
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2016, 16 (03): : 1799 - 1812
  • [7] HIGHER HOMOTOPY COMMUTATIVITY AND EXTENSION OF MAPS
    WILLIAMS, FD
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 26 (04) : 664 - &
  • [8] Fixed points theorems of KKM-type maps
    Lin, LJ
    Yu, ZT
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 38 (02) : 265 - 275
  • [9] NOTE ON OPEN EXTENSION OF MAPS
    KOHLI, JK
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1972, 24 (06): : 1139 - 1144
  • [10] On Homotopy of Walks and Spherical Maps in Homotopy Type Theory
    Prieto-Cubides, Jonathan
    [J]. PROCEEDINGS OF THE 11TH ACM SIGPLAN INTERNATIONAL CONFERENCE ON CERTIFIED PROGRAMS AND PROOFS (CPP '22), 2022, : 338 - 351