Cloud Big Data Lake for Advanced Analytics in Semiconductor Manufacturing

被引:0
|
作者
Sun, Susan [1 ]
Ye, Jeff [2 ]
Schwarthoff, Hubert [3 ]
Rosin, Jon [4 ]
Vakkalagadda, Varalakshmi [5 ]
Chang, Jimmy [6 ]
Ubbara, Sesidhar Reddy [3 ]
Chinthakindi, Anil [7 ]
机构
[1] Micron Technol Inc, Data Sci, Manassas, VA 83716 USA
[2] Micron Technol Inc, Proc Integrat, Manassas, VA USA
[3] Micron Technol Inc, Smart Mfg Tech Solut, Boise, ID USA
[4] Micron Technol Inc, Informat Technol, Manassas, VA USA
[5] Micron Technol Inc, Data Sci, Manassas, VA USA
[6] Micron Technol Inc, Smart Mfg Tech Solut, Taichung, Taiwan
[7] Micron Technol Inc, Front End Cent Qual, Manassas, VA USA
关键词
Cloud; Data Lake; Semiconductor Manufacturing; Big Data Analytics;
D O I
10.1109/ASMC61125.2024.10545365
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Data driven business intelligence is changing how semiconductor manufacturing thrives in the long term. A cloud big data lake is designed and implemented based on state-of-the-art cloud architecture providing complete services for data ingestion, storage, processing, advanced analytics, and machine learning with a high level of security. Efficient and effective use of this big data lake and data science enables problem solving and decision making to improve productivity and performance.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Big Data Analytics for Smart Manufacturing: Case Studies in Semiconductor Manufacturing
    Moyne, James
    Iskandar, Jimmy
    [J]. PROCESSES, 2017, 5 (03)
  • [2] Advanced Semiconductor Manufacturing Using Big Data
    Tsuda, Tomio
    Inoue, Shinji
    Kayahara, Akihiro
    Imai, Shin-ichi
    Tanaka, Tomoya
    Sato, Naoaki
    Yasuda, Satoshi
    [J]. IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 2015, 28 (03) : 229 - 235
  • [3] Big Data Emergence in Semiconductor Manufacturing Advanced Process Control
    Moyne, James
    Samantaray, Jamini
    Armacost, Mike
    [J]. 2015 26TH ANNUAL SEMI ADVANCED SEMICONDUCTOR MANUFACTURING CONFERENCE (ASMC), 2015, : 130 - 135
  • [4] Big data and predictive analytics methods for modeling and analysis of semiconductor manufacturing processes
    Butte, Sujata
    Patil, Sainath
    [J]. 2016 IEEE WORKSHOP ON MICROELECTRONICS AND ELECTRON DEVICES (WMED), 2016, : 14 - 18
  • [5] Big data/analytics platform for Industry 4.0 implementation in advanced manufacturing context
    Renan Bonnard
    Márcio Da Silva Arantes
    Rodolfo Lorbieski
    Kléber Magno Maciel Vieira
    Marcelo Canzian Nunes
    [J]. The International Journal of Advanced Manufacturing Technology, 2021, 117 : 1959 - 1973
  • [6] Big data/analytics platform for Industry 4.0 implementation in advanced manufacturing context
    Bonnard, Renan
    Arantes, Marcio Da Silva
    Lorbieski, Rodolfo
    Maciel Vieira, Kleber Magno
    Nunes, Marcelo Canzian
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2021, 117 (5-6): : 1959 - 1973
  • [7] Big Data Capabilities Applied to Semiconductor Manufacturing Advanced Process Control
    Moyne, James
    Samantaray, Jamini
    Armacost, Michael
    [J]. IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 2016, 29 (04) : 283 - 291
  • [8] Cloud-based manufacturing equipment and big data analytics to enable on-demand manufacturing services
    Lu, Yuqian
    Xu, Xun
    [J]. ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2019, 57 : 92 - 102
  • [9] An evidential analytics for buried information in big data samples: Case study of semiconductor manufacturing
    Ko, Yu-Chien
    Fujita, Hamido
    [J]. INFORMATION SCIENCES, 2019, 486 : 190 - 203
  • [10] Guest Editorial: Special Section on Artificial Intelligence and Big Data Analytics for Cloud Manufacturing
    Zhou, Jiehan
    Lu, Qinghua
    Dai, Wenbin
    Zhong, Ray Y.
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (12) : 8944 - 8947