High valence tungsten doping enhances the lithium storage performance of high-voltage medium-nickel low-cobalt layered oxide cathode

被引:0
|
作者
Xu, Ming [1 ]
Yin, Dongming [2 ]
Wang, Limin [2 ]
Chang, Limin [1 ]
Cheng, Yong [2 ]
机构
[1] Jilin Normal Univ, Key Lab Preparat & Applicat Environm Friendly Mat, Minist Educ, Changchun 130103, Peoples R China
[2] Chinese Acad Sci, State Key Lab Rare Earth Resource Utilizat, Changchun Inst Appl Chem, Changchun 130022, Peoples R China
关键词
Lithium-ion batteries; High-voltage medium-nickel low-cobalt cath-ode; Tungsten doping; High valence elements; Structural passivation; LINI0.6CO0.2MN0.2O2; CATHODE; ELECTROCHEMICAL PERFORMANCE; ION BATTERIES; LINI0.8CO0.1MN0.1O2; CHALLENGES; PROGRESS;
D O I
10.1016/j.est.2024.112279
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
High voltage and low cobalt lithium oxide cathode materials are regarded as promising candidates for high energy density lithium-ion batteries due to their excellent attributes of high capacity and cost-effectiveness. However, increasing the charging cut-off voltage and reducing cobalt content would result in the degradation of the electrode-electrolyte interface environment and other bulk phase layered structure issues, which can significantly impact the service life of the battery. In this study, we successfully synthesized W-doped LiNi0.65Co0.05Mn0.30O2 cathode material by introducing a small amount (1 mol%) of tungsten (W) during the stage of precursor lithiation annealing. The introduction of W doping has shown remarkable enhancements in cyclic stability (capacity retention rate for 200 cycles: 97 % vs. 89 %) than pristine material at 4.5 V. Moreover, the prepared graphite-type high-voltage full battery also exhibits a capacity retention rate of 90.2 % after 200 cycles and has a high energy density of up to 258 Wh kg-1. These improvements can be attributed to the high valence (+6) W doping passivating the activity of the cathode material, thereby enhancing the bulk structure and electrode-electrolyte interface stability of the material. These findings provide valuable strategic insights for utilizing high-voltage and low-cobalt cathode materials in lithium-ion batteries.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] A multifunctional dual cation doping strategy to stabilize high-voltage medium-nickel low-cobalt lithium layered oxide cathode
    Shen, Yabin
    Yin, Dongming
    Xue, Hongjin
    Sun, Wei
    Wang, Limin
    Cheng, Yong
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 663 : 961 - 970
  • [2] Si doping to passivate high-voltage medium-nickel low-cobalt layered oxide cathode reactivity enabling longer life lithium-ion battery
    Yuan, Dongxia
    Zhai, Huiying
    Shen, Yabin
    Wang, Limin
    Chen, Anjie
    Cheng, Yong
    JOURNAL OF ENERGY STORAGE, 2024, 84
  • [3] Gospel for Improving the Lithium Storage Performance of High-Voltage High-Nickel Low-Cobalt Layered Oxide Cathode Materials
    Shen, Yabin
    Yao, Xiaojing
    Wang, Shaohua
    Zhang, Dongyu
    Yin, Dongming
    Wang, Limin
    Cheng, Yong
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (49) : 58871 - 58884
  • [4] Gospel for Improving the Lithium Storage Performance of High-Voltage High-Nickel Low-Cobalt Layered Oxide Cathode Materials
    Shen, Yabin
    Yao, Xiaojing
    Wang, Shaohua
    Zhang, Dongyu
    Yin, Dongming
    Wang, Limin
    Cheng, Yong
    ACS Applied Materials and Interfaces, 2021, 13 (49): : 58871 - 58884
  • [5] Building a Protective Layer on Medium-Nickel and Low-Cobalt Cathodes for High-Voltage Lithium-Ion Batteries
    Ma, Mingyuan
    Ji, Haijin
    Du, Lin
    Liao, Yaqi
    Huang, Yunhui
    ACS APPLIED ENERGY MATERIALS, 2025, 8 (05): : 3020 - 3027
  • [6] Electrolyte-Enabled High-Voltage Operation of a Low-Nickel, Low-Cobalt Layered Oxide Cathode for High Energy Density Lithium-Ion Batteries
    Yi, Michael
    Sim, Richard
    Manthiram, Arumugam
    SMALL, 2024, 20 (42)
  • [7] A highly promising high-nickel low-cobalt lithium layered oxide cathode material for high-performance lithium-ion batteries
    Shen, Yabin
    Xue, Hongjin
    Wang, Shaohua
    Wang, Zhaomin
    Zhang, Dongyu
    Yin, Dongming
    Wang, Limin
    Cheng, Yong
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 597 : 334 - 344
  • [8] Stabilizing effects of atomic Ti doping on high-voltage high-nickel layered oxide cathode for lithium-ion rechargeable batteries
    Yong Cheng
    Yan Sun
    Changting Chu
    Limin Chang
    Zhaomin Wang
    Dongyu Zhang
    Wanqiang Liu
    Zechao Zhuang
    Limin Wang
    Nano Research, 2022, 15 : 4091 - 4099
  • [9] Stabilizing effects of atomic Ti doping on high-voltage high-nickel layered oxide cathode for lithium-ion rechargeable batteries
    Cheng, Yong
    Sun, Yan
    Chu, Changting
    Chang, Limin
    Wang, Zhaomin
    Zhang, Dongyu
    Liu, Wanqiang
    Zhuang, Zechao
    Wang, Limin
    NANO RESEARCH, 2022, 15 (05) : 4091 - 4099
  • [10] Blow-Spinning Enabled Precise Doping and Coating for Improving High-Voltage Lithium Cobalt Oxide Cathode Performance
    Tian, Te
    Zhang, Tian-Wen
    Yin, Yi-Chen
    Tan, Yi-Hong
    Song, Yong-Hui
    Lu, Lei-Lei
    Yao, Hong-Bin
    NANO LETTERS, 2020, 20 (01) : 677 - 685