Bifractality in the one-dimensional Wolf-Villain model

被引:0
|
作者
Luis, Edwin E. Mozo [1 ]
Ferreira, Silvio C. [2 ,3 ]
de Assis, Thiago A. [1 ,4 ]
机构
[1] Univ Fed Fluminense, Inst Fis, Ave Litoranea S-N, BR-24210340 Niteroi, RJ, Brazil
[2] Univ Fed Vicosa, Dept Fis, BR-36570900 Vicosa, MG, Brazil
[3] Natl Inst Sci & Technol Complex Syst, BR-22290180 Rio De Janeiro, Brazil
[4] Univ Fed Bahia, Inst Fis, Campus Univ Federacao,Rua Barao Jeremoabo S-N, BR-40170115 Salvador, BA, Brazil
关键词
CRITICAL EXPONENTS; GROWTH-MODELS; DAS-SARMA; UNIVERSALITY; TAMBORENEA; MORPHOLOGY; CONTINUUM; EQUATIONS; EVOLUTION; SURFACES;
D O I
10.1103/PhysRevE.110.L012801
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We introduce a multifractal optimal detrended fluctuation analysis to study the scaling properties of the onedimensional Wolf-Villain (WV) model for surface growth. This model produces coarsened surface morphologies for long timescales (up to 109 monolayers) and its universality class remains an open problem. Our results for the multifractal exponent tau(q) reveal an effective local roughness exponent consistent with a transient given by the molecular beam epitaxy (MBE) growth regime and Edwards-Wilkinson (EW) universality class for negative and positive q values, respectively. Therefore, although the results corroborate that long-wavelength fluctuations belong to the EW class in the hydrodynamic limit, as conjectured in the recent literature, a bifractal signature of the WV model with an MBE regime at short wavelengths was observed.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Crossover and universality in the Wolf-Villain model
    Vvedensky, DD
    [J]. PHYSICAL REVIEW E, 2003, 68 (01):
  • [2] Asymptotic dynamic scaling behavior of the (1+1)-dimensional Wolf-Villain model
    Xun, Zhipeng
    Tang, Gang
    Han, Kui
    Xia, Hui
    Hao, Dapeng
    Li, Yan
    [J]. PHYSICAL REVIEW E, 2012, 85 (04):
  • [3] Extensive numerical study of the anomalous dynamic scaling of the Wolf-Villain model
    Xun, Zhipeng
    Tang, Gang
    Han, Kui
    Xia, Hui
    Hao, Dapeng
    Yang, Xiquan
    Zhou, Wei
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (11) : 2189 - 2197
  • [4] Anomalous dynamical scaling and bifractality in the one-dimensional Anderson model
    Arias, SDT
    Luck, JM
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (38): : 7699 - 7717
  • [5] Archaeology Poetry: from the Wolf-Villain to the Wolf-Companion
    Bogomyakov, Vladimir G.
    [J]. NOVOE LITERATURNOE OBOZRENIE, 2019, (158): : 45 - 54
  • [6] Schramm-Loewner evolution theory of the asymptotic behaviors of (2+1)-dimensional Wolf-Villain model
    Chen, Yili
    Tang, Gang
    Xun, Zhipeng
    Zhu, Lei
    Zhang, Zhe
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 465 : 613 - 620
  • [7] Conformal Invariance of Isoheight Lines of the (2+1)-Dimensional Wolf-Villain Surfaces
    Yuling Chen
    Gang Tang
    Kui Han
    Hui Xia
    Dapeng Hao
    Zhipeng Xun
    Rongji Wen
    [J]. Journal of Statistical Physics, 2011, 143 : 501 - 508
  • [8] Conformal Invariance of Isoheight Lines of the (2+1)-Dimensional Wolf-Villain Surfaces
    Chen, Yuling
    Tang, Gang
    Han, Kui
    Xia, Hui
    Hao, Dapeng
    Xun, Zhipeng
    Wen, Rongji
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2011, 143 (03) : 501 - 508
  • [9] Mound morphology of the 2+1-dimensional Wolf-Villain model caused by the step-edge diffusion effect
    Xun, Zhipeng
    Tang, Gang
    Han, Kui
    Xia, Hui
    Hao, Dapeng
    Chen, Yuling
    Wen, Rongji
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (24) : 5635 - 5644
  • [10] SURFACE DYNAMICS OF THE WOLF-VILLAIN MODEL FOR EPITAXIAL-GROWTH IN 1+1 DIMENSIONS
    PARK, K
    KAHNG, B
    KIM, SS
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1994, 210 (1-2) : 146 - 154