Topologically protected exceptional points and reentrant PT phase in an exact ternary model

被引:0
|
作者
Lee, Chulwon [1 ]
Zhang, Kai [1 ]
Miao, Jinyan [1 ]
Sun, Kai [1 ]
Deng, Hui [1 ]
机构
[1] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
SYMMETRY;
D O I
10.1103/PhysRevA.109.053503
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In open, driven systems where parity-time symmetry is preserved, phenomena that defy conventional wisdom emerge near exceptional points, promising advances in photonics. While most studies focus on two-level systems of a conventional exceptional point, unconventional exceptional points as well as reentrant phases have been discovered in separate studies of higher-dimensional phase spaces. In this article, we present a minimal, analytical model that encompasses several key phenomena in higher-dimensional phase spaces, including reentrant PT phases, higher-order exceptional points, and anisotropic exceptional points. Using the exact analytical solution, we identify a topological index as the unifying origin of these different phenomena. The simplicity of the model may furthermore facilitate experimental implementations for enhanced sensing and efficient polariton devices.
引用
收藏
页数:10
相关论文
共 16 条
  • [1] Topologically protected entanglement switching around exceptional points
    Tang, Zan
    Chen, Tian
    Tang, Xing
    Zhang, Xiangdong
    LIGHT-SCIENCE & APPLICATIONS, 2024, 13 (01)
  • [2] Reverse PT phase transition across exceptional points of any order
    Teimourpour, Mohammad H.
    Ozdemir, Sahin K.
    El-Ganainy, Ramy
    EPL, 2017, 119 (03)
  • [3] PT-Symmetric Quantum Rabi Model: Solutions and Exceptional Points
    Li, Jiong
    Wang, Yi-Cheng
    Duan, Li-Wei
    Chen, Qing-Hu
    ADVANCED QUANTUM TECHNOLOGIES, 2025,
  • [4] A return to observability near exceptional points in a schematic PT-symmetric model
    Znojil, Miloslav
    PHYSICS LETTERS B, 2007, 647 (2-3) : 225 - 230
  • [5] Zak Phase and Zero Extinction of Topologically Protected Edge States in PT-symmetric Plasmonic Chains
    Ling, C. W.
    Mok, T. C.
    Choi, K. H.
    Fung, K. H.
    2016 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS), 2016, : 801 - 801
  • [6] Coalescence of exceptional points and phase diagrams for one-dimensional PT-symmetric photonic crystals
    Ding, Kun
    Zhang, Z. Q.
    Chan, C. T.
    PHYSICAL REVIEW B, 2015, 92 (23):
  • [7] A lattice-statistical model for ternary polymer mixtures: Exact phase diagrams
    Barry, JH
    Pant, P
    Wu, FY
    PHYSICA A, 1997, 238 (1-4): : 149 - 162
  • [8] Multiple exceptional points and phase transitions of a one-dimensional PT-symmetric Lieb photonic lattice
    Zhang, Yingying
    Xia, Shiqiang
    Qin, Lu
    Wang, Qi
    Jia, Pengbo
    Qi, Wenrong
    Feng, Xuejing
    Jiang, Yajing
    Zhu, Zunlue
    Zhao, Xingdong
    Liu, Wuming
    Liu, Yufang
    APPLIED PHYSICS LETTERS, 2023, 123 (16)
  • [9] The collapse of quasi-self-adjointness at the exceptional points of a PT-symmetric model with complex Robin boundary conditions
    Kramar, David
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (41)
  • [10] Switching of the direction of reflectionless light propagation at exceptional points in non-PT-symmetric structures using phase-change materials
    Huang, Yin
    Shen, Yuecheng
    Min, Changjun
    Veronis, Georgios
    OPTICS EXPRESS, 2017, 25 (22): : 27283 - 27297