Suraksha: Spatio-Temporal Crime Forecasting and Micro-Location Analysis

被引:0
|
作者
Jayawardana, Hiranya [1 ]
Pathmaperuma, Madushi Hasara [2 ]
机构
[1] Univ Cent Lancashire, Preston, England
[2] Universal Coll Lanka UCL, Sri Jayawardenepura Kotte, Sri Lanka
关键词
Random Forest; Chicago Crime Dataset; Crime Prediction; Location Micro-Analysis; PREDICTION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Suraksha, a spatiotemporal crime prediction system, designed to elevate crime prevention with precise insights, empowering law enforcement for a safer tomorrow. Utilizing vast datasets, machine learning, and GIS, it forecasts crime hotspots by incorporating Chicago's extensive crime statistics. Addressing both precision and ethical considerations, Suraksha achieves RMSE values of 0.0874 (latitude) and 0.0602 (longitude), marking a leap in predictive policing. This pioneering approach aims to transform public safety by proactively combating crime, ensuring community well-being through innovative data-driven strategies.
引用
收藏
页码:1635 / 1641
页数:7
相关论文
共 50 条
  • [1] Crime in India: a spatio-temporal analysis
    Pintu Kabiraj
    [J]. GeoJournal, 2023, 88 : 1283 - 1304
  • [2] Crime in India: a spatio-temporal analysis
    Kabiraj, Pintu
    [J]. GEOJOURNAL, 2023, 88 (02) : 1283 - 1304
  • [3] The simple spatial disaggregation approach to spatio-temporal crime forecasting
    Ivaha, Christian
    Al-Madfai, Hasan
    Higgs, Gary
    Ware, Andrew
    Corcoran, Jonathan
    [J]. INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2007, 3 (03): : 509 - 523
  • [4] Spatio-temporal Crime Analysis and Forecasting on Twitter Data Using Machine Learning Algorithms
    Vivek M.
    Prathap B.R.
    [J]. SN Computer Science, 4 (4)
  • [5] Data analysis and processing for spatio-temporal forecasting
    Lee, Hyoungwoo
    Choo, Jaegul
    [J]. 20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2020), 2020, : 737 - 739
  • [6] Spatio-Temporal Prediction of Suspect Location by Spatio-Temporal Semantics
    Duan, Lian
    Hu, Tao
    Zhu, Xinyan
    Ye, Xinyue
    Wang, Shaohua
    [J]. Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2019, 44 (05): : 765 - 770
  • [7] Spatio-Temporal Pattern Analysis and Prediction for Urban Crime
    Li, Zhe
    Zhang, Tianfan
    Yuan, Zhi
    Wu, Zhiang
    Du, Zhen
    [J]. 2018 SIXTH INTERNATIONAL CONFERENCE ON ADVANCED CLOUD AND BIG DATA (CBD), 2018, : 177 - 182
  • [8] Exploratory methods for dynamic spatio-temporal analysis of crime
    Groff, E
    Albrecht, J
    [J]. FORENSIC SCIENCE INTERNATIONAL, 2003, 136 : 4 - 4
  • [9] A review of spatio-temporal pattern analysis approaches on crime analysis
    Leong, Kelvin
    Sung, Anna
    [J]. INTERNATIONAL E-JOURNAL OF CRIMINAL SCIENCES, 2015, (09):
  • [10] CSAN: A neural network benchmark model for crime forecasting in spatio-temporal scale
    Wang, Qi
    Jin, Guangyin
    Zhao, Xia
    Feng, Yanghe
    Huang, Jincai
    [J]. KNOWLEDGE-BASED SYSTEMS, 2020, 189