Thermodynamics of Proton-Coupled Electron Transfer at Tricopper μ-Oxo/Hydroxo/Aqua Complexes

被引:4
|
作者
Mondal, Saikat [1 ]
Zhang, Weiyao [1 ]
Zhang, Shiyu [1 ]
机构
[1] Ohio State Univ, Dept Chem & Biochem, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
BOND-DISSOCIATION ENERGIES; HYDROGEN-ATOM ABSTRACTION; MULTICOPPER OXIDASES; NATIVE INTERMEDIATE; REDUCTIVE CLEAVAGE; POTENTIALS; REACTIVITY; INSIGHTS; LACCASE;
D O I
10.1021/jacs.3c14420
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Multicopper oxidases (MCOs) utilize a tricopper active site to reduce dioxygen to water through 4H(+) 4e(-) proton-coupled electron transfer (PCET). Understanding the thermodynamics of PCET at a tricopper cluster is essential for elucidating how MCOs harness the oxidative power of O-2 while mitigating oxidative damage. In this study, we determined the O-H bond dissociation free energies (BDFEs) and pK(a) values of a series of tricopper hydroxo and tricopper aqua complexes as synthetic models of the tricopper site in MCOs. Tricopper intermediates on the path of alternating electron and proton transfer (ET-PT-ET-PT-ET) have modest BDFE(O-H) values in the range of 53.0-57.1 kcal/mol. In contrast, those not on the path of ET-PT-ET-PT-ET display much higher (78.1 kcal/mol) or lower (44.7 kcal/mol) BDFE(O-H) values. Additionally, the pK(a) of bridging OH and OH2 motifs increase by 8-16 pK(a) units per oxidation state. The same oxidation state changes have a lesser impact on the pK(a) of N-H motif in the secondary coordination sphere, with an increase of ca. 5 pK(a) units per oxidation state. The steeper pK(a) increase of the tricopper center promotes proton transfer from the secondary coordination sphere. Overall, our study shed light on the PCET pathway least prone to decomposition, elucidating why tricopper centers are an optimal choice for promoting efficient oxygen reduction reaction.
引用
收藏
页码:15036 / 15044
页数:9
相关论文
共 50 条
  • [1] Basicity of MnIII-Hydroxo Complexes Controls the Thermodynamics of Proton-Coupled Electron Transfer Reactions
    Singh, Priya
    Lomax, Markell J. A.
    Opalade, Adedamola A.
    Nguyen, Brandon B.
    Srnec, Martin
    Jackson, Timothy A.
    INORGANIC CHEMISTRY, 2024, 63 (46) : 21941 - 21953
  • [2] Fundamental electron-transfer and proton-coupled electron-transfer properties of Ru(IV)-oxo complexes
    Kotani, Hiroaki
    Shimomura, Hinatsu
    Horimoto, Momoka
    Ishizuka, Tomoya
    Shiota, Yoshihito
    Yoshizawa, Kazunari
    Yanagisawa, Sacniko
    Kawanara-Nakagawa, Yuka
    Kubo, Minoru
    Kojima, TaKaniko
    DALTON TRANSACTIONS, 2019, 48 (35) : 13154 - 13161
  • [3] Proton-Coupled Electron Transfer with Photoexcited Metal Complexes
    Wenger, Oliver S.
    ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (07) : 1517 - 1526
  • [4] Proton-coupled electron transfer with photoexcited metal complexes
    Wenger, Oliver S.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [5] Proton-coupled electron transfer
    Robert, Marc
    ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (07) : 7695 - 7695
  • [6] Proton-coupled electron transfer
    Cukier, RI
    Nocera, DG
    ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1998, 49 : 337 - 369
  • [7] Proton-Coupled Electron Transfer
    Weinberg, David R.
    Gagliardi, Christopher J.
    Hull, Jonathan F.
    Murphy, Christine Fecenko
    Kent, Caleb A.
    Westlake, Brittany C.
    Paul, Amit
    Ess, Daniel H.
    McCafferty, Dewey Granville
    Meyer, Thomas J.
    CHEMICAL REVIEWS, 2012, 112 (07) : 4016 - 4093
  • [8] Proton-coupled electron transfer
    Lebeau, E
    Meyer, TJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1998, 216 : U96 - U96
  • [9] Proton-coupled electron transfer
    Huynh, My Hang V.
    Meyer, Thomas J.
    CHEMICAL REVIEWS, 2007, 107 (11) : 5004 - 5064
  • [10] Tuning the proton-coupled electron-transfer reactivity of Mn(III)-hydroxo complexes via ligand perturbations
    Rice, Derek
    Burr, Andrew
    Jackson, Timothy
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253