FedKG: A Knowledge Distillation-Based Federated Graph Method for Social Bot Detection
被引:1
|
作者:
Wang, Xiujuan
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R ChinaBeijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
Wang, Xiujuan
[1
]
Chen, Kangmiao
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R ChinaBeijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
Chen, Kangmiao
[1
]
Wang, Keke
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R ChinaBeijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
Wang, Keke
[1
]
Wang, Zhengxiang
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R ChinaBeijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
Wang, Zhengxiang
[1
]
Zheng, Kangfeng
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Posts & Telecommun, Sch Cyberspace Secur, Beijing 100876, Peoples R ChinaBeijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
Zheng, Kangfeng
[2
]
Zhang, Jiayue
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R ChinaBeijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
Zhang, Jiayue
[1
]
机构:
[1] Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Cyberspace Secur, Beijing 100876, Peoples R China
social bot detection;
federated learning;
knowledge distillation;
graph neural network;
D O I:
10.3390/s24113481
中图分类号:
O65 [分析化学];
学科分类号:
070302 ;
081704 ;
摘要:
Malicious social bots pose a serious threat to social network security by spreading false information and guiding bad opinions in social networks. The singularity and scarcity of single organization data and the high cost of labeling social bots have given rise to the construction of federated models that combine federated learning with social bot detection. In this paper, we first combine the federated learning framework with the Relational Graph Convolutional Neural Network (RGCN) model to achieve federated social bot detection. A class-level cross entropy loss function is applied in the local model training to mitigate the effects of the class imbalance problem in local data. To address the data heterogeneity issue from multiple participants, we optimize the classical federated learning algorithm by applying knowledge distillation methods. Specifically, we adjust the client-side and server-side models separately: training a global generator to generate pseudo-samples based on the local data distribution knowledge to correct the optimization direction of client-side classification models, and integrating client-side classification models' knowledge on the server side to guide the training of the global classification model. We conduct extensive experiments on widely used datasets, and the results demonstrate the effectiveness of our approach in social bot detection in heterogeneous data scenarios. Compared to baseline methods, our approach achieves a nearly 3-10% improvement in detection accuracy when the data heterogeneity is larger. Additionally, our method achieves the specified accuracy with minimal communication rounds.
机构:
Kyung Hee Univ, Dept Comp Sci & Engn, Yongin 17104, South KoreaKyung Hee Univ, Dept Comp Sci & Engn, Yongin 17104, South Korea
Le, Huy Q.
Nguyen, Minh N. H.
论文数: 0引用数: 0
h-index: 0
机构:
Korea Univ Informat & Commun Technol, Univ Danang Vietnam, Digital Sci & Technol Inst, Da Nang 550000, VietnamKyung Hee Univ, Dept Comp Sci & Engn, Yongin 17104, South Korea
Nguyen, Minh N. H.
Thwal, Chu Myaet
论文数: 0引用数: 0
h-index: 0
机构:
Kyung Hee Univ, Dept Comp Sci & Engn, Yongin 17104, South KoreaKyung Hee Univ, Dept Comp Sci & Engn, Yongin 17104, South Korea
Thwal, Chu Myaet
Qiao, Yu
论文数: 0引用数: 0
h-index: 0
机构:
Kyung Hee Univ, Dept Artificial Intelligence, Yongin 17104, South KoreaKyung Hee Univ, Dept Comp Sci & Engn, Yongin 17104, South Korea
Qiao, Yu
Zhang, Chaoning
论文数: 0引用数: 0
h-index: 0
机构:
Kyung Hee Univ, Dept Artificial Intelligence, Yongin 17104, South KoreaKyung Hee Univ, Dept Comp Sci & Engn, Yongin 17104, South Korea
Zhang, Chaoning
Hong, Choong Seon
论文数: 0引用数: 0
h-index: 0
机构:
Kyung Hee Univ, Dept Comp Sci & Engn, Yongin 17104, South KoreaKyung Hee Univ, Dept Comp Sci & Engn, Yongin 17104, South Korea
机构:
Univ Technol Troyes, LIST3N, Troyes, France
Aquilae, Troyes, France
Univ Technol Troyes, 2 Rue Marie Curie, F-10300 Troyes, France
Aquilae, Dept LIST3N, 12 Rue Marie Curie, F-10300 Troyes, FranceUniv Technol Troyes, LIST3N, Troyes, France