Deep Reinforcement Learning with Hierarchical Structures

被引:0
|
作者
Li, Siyuan [1 ]
机构
[1] Tsinghua Univ, Inst Interdisciplinary Informat Sci, Beijing, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hierarchical reinforcement learning (HRL), which enables control at multiple time scales, is a promising paradigm to solve challenging and long-horizon tasks. In this paper, we briefly introduce our work in bottom-up and top-down HRL and outline the directions for future work.
引用
收藏
页码:4899 / 4900
页数:2
相关论文
共 50 条
  • [1] Language as an Abstraction for Hierarchical Deep Reinforcement Learning
    Jiang, Yiding
    Gu, Shixiang
    Murphy, Kevin
    Finn, Chelsea
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [2] Research and Development on Deep Hierarchical Reinforcement Learning
    Huang, Zhi-Gang
    Liu, Quan
    Zhang, Li-Hua
    Cao, Jia-Qing
    Zhu, Fei
    [J]. Ruan Jian Xue Bao/Journal of Software, 2023, 34 (02): : 733 - 760
  • [3] HIERARCHICAL CACHING VIA DEEP REINFORCEMENT LEARNING
    Sadeghi, Alireza
    Wang, Gang
    Giannakis, Georgios B.
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 3532 - 3536
  • [4] Towards Automated Imbalanced Learning with Deep Hierarchical Reinforcement Learning
    Zha, Daochen
    Lai, Kwei-Herng
    Tan, Qiaoyu
    Ding, Sirui
    Zou, Na
    Hu, Xia Ben
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 2476 - 2485
  • [5] Active learning of causal structures with deep reinforcement learning
    Amirinezhad, Amir
    Salehkaleybar, Saber
    Hashemi, Matin
    [J]. NEURAL NETWORKS, 2022, 154 : 22 - 30
  • [6] Hierarchical Deep Reinforcement Learning for VWAP Strategy Optimization
    Li, Xiaodong
    Wu, Pangjing
    Zou, Chenxin
    Li, Qing
    [J]. IEEE TRANSACTIONS ON BIG DATA, 2024, 10 (03) : 288 - 300
  • [7] Hierarchical Deep Reinforcement Learning for Continuous Action Control
    Yang, Zhaoyang
    Merrick, Kathryn
    Jin, Lianwen
    Abbass, Hussein A.
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (11) : 5174 - 5184
  • [8] Visual Tracking via Hierarchical Deep Reinforcement Learning
    Zhang, Dawei
    Zheng, Zhonglong
    Jia, Riheng
    Li, Minglu
    [J]. THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 3315 - 3323
  • [9] Learning to Interrupt: A Hierarchical Deep Reinforcement Learning Framework for Efficient Exploration
    Li, Tingguang
    Pan, Jin
    Zhu, Delong
    Meng, Max Q. -H.
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2018, : 648 - 653
  • [10] Deep Learning and Hierarchical Reinforcement Learning for modeling a Conversational Recommender System
    Basile, Pierpaolo
    Greco, Claudio
    Suglia, Alessandro
    Semeraro, Giovanni
    [J]. INTELLIGENZA ARTIFICIALE, 2018, 12 (02) : 125 - 141