BFG&MSF-Net: Boundary Feature Guidance and Multi-Scale Fusion Network for Thyroid Nodule Segmentation

被引:0
|
作者
Liu, Jianuo [1 ]
Mu, Juncheng [1 ]
Sun, Haoran [1 ]
Dai, Chenxu [1 ]
Ji, Zhanlin [1 ,2 ]
Ganchev, Ivan [3 ,4 ,5 ]
机构
[1] North China Univ Sci & Technol, Hebei Key Lab Ind Intelligent Percept, Tangshan 063210, Peoples R China
[2] Zhejiang A&F Univ, Coll Math & Comp Sci, Hangzhou 311300, Peoples R China
[3] Univ Limerick, Telecommun Res Ctr TRC, Limerick, Ireland
[4] Univ Plovdiv Paisii Hilendarski, Dept Comp Syst, Plovdiv 4000, Bulgaria
[5] Bulgarian Acad Sci, Inst Math & Informat, Sofia 1040, Bulgaria
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Image segmentation; Thyroid; Feature extraction; Medical diagnostic imaging; Ultrasonic imaging; Image edge detection; Task analysis; Boundary conditions; Ultrasound image; thyroid nodule; segmentation; deep learning; boundary feature guidance; multi-scale fusion; FRAMEWORK; SYSTEM;
D O I
10.1109/ACCESS.2024.3407795
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurately segmenting thyroid nodules in ultrasound images is crucial for computer-aided diagnosis. Despite the success of Convolutional Neural Networks (CNNs) and Transformers in natural images processing, they struggle with precise boundaries and small-object segmentation in ultrasound images. To address this, a novel BFG&MSF-Net model is proposed in this paper, utilizing four newly designed modules: (1) a Boundary Feature Guidance Module (BFGM) for improving the edge details capturing; (2) a Multi-Scale Perception Fusion Module (MSPFM) for enhancing the information capture by combining a novel Positional Blended Attention (PBA) with the Pyramid Squeeze Attention (PSA); (3) a Depthwise Separable Atrous Spatial Pyramid Pooling Module (DSASPPM), used in the bottleneck to improve the contextual information capturing; and (4) a Refinement Module (RM) optimizing the low-level features for better organ and boundary identification. Evaluated on the TN3K and DDTI open-access datasets, BFG&MSF-Net demonstrates effective reduction of boundary segmentation errors and superior segmentation performance compared to commonly used segmentation models and state-of-the-art models, which makes it a promising solution for accurate thyroid nodule segmentation in ultrasound images.
引用
收藏
页码:78701 / 78713
页数:13
相关论文
共 50 条
  • [1] MSF-Net: A Lightweight Multi-Scale Feature Fusion Network for Skin Lesion Segmentation
    Shao, Dangguo
    Ren, Lifan
    Ma, Lei
    [J]. BIOMEDICINES, 2023, 11 (06)
  • [2] MSFF-Net: Multi-Scale Feature Fusion Network for Gastrointestinal Vessel Segmentation
    Li, Sheng
    Lu, Cheng
    Kong, Xueting
    Zhu, Jinhui
    He, Xiongxiong
    Zhang, Ni
    [J]. JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2022, 42 (03) : 292 - 300
  • [3] MSFF-Net: Multi-Scale Feature Fusion Network for Gastrointestinal Vessel Segmentation
    Sheng Li
    Cheng Lu
    Xueting Kong
    Jinhui Zhu
    Xiongxiong He
    Ni Zhang
    [J]. Journal of Medical and Biological Engineering, 2022, 42 : 292 - 300
  • [4] DEMF-Net: A dual encoder multi-scale feature fusion network for polyp segmentation
    Cao, Xiaorui
    Yu, He
    Yan, Kang
    Cui, Rong
    Guo, Jinming
    Li, Xuan
    Xing, Xiaoxue
    Huang, Tao
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 96
  • [5] A multi-scale perceptual polyp segmentation network based on boundary guidance
    Lu, Lu
    Chen, Shuhan
    Tang, Haonan
    Zhang, Xinfeng
    Hu, Xuelong
    [J]. IMAGE AND VISION COMPUTING, 2023, 138
  • [6] Multi-scale feature fusion network with local attention for lung segmentation
    Xie, Yinghua
    Zhou, Yuntong
    Wang, Chen
    Ma, Yanshan
    Yang, Ming
    [J]. SIGNAL PROCESSING-IMAGE COMMUNICATION, 2023, 119
  • [7] Multi-scale feature pyramid fusion network for medical image segmentation
    Zhang, Bing
    Wang, Yang
    Ding, Caifu
    Deng, Ziqing
    Li, Linwei
    Qin, Zesheng
    Ding, Zhao
    Bian, Lifeng
    Yang, Chen
    [J]. INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2023, 18 (02) : 353 - 365
  • [8] Multi-scale feature pyramid fusion network for medical image segmentation
    Bing Zhang
    Yang Wang
    Caifu Ding
    Ziqing Deng
    Linwei Li
    Zesheng Qin
    Zhao Ding
    Lifeng Bian
    Chen Yang
    [J]. International Journal of Computer Assisted Radiology and Surgery, 2023, 18 : 353 - 365
  • [9] Regional perception and multi-scale feature fusion network for cardiac segmentation
    Lu, Chenggang
    Yuan, Jinli
    Xia, Kewen
    Guo, Zhitao
    Chen, Muxuan
    Yu, Hengyong
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (10):
  • [10] MFEFNet: Multi-scale feature enhancement and Fusion Network for polyp segmentation
    Xia, Yang
    Yun, Haijiao
    Liu, Yanjun
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 157