Deep Learning with Kernels through RKHM and the Perron-Frobenius Operator

被引:0
|
作者
Hashimoto, Yuka [1 ,2 ]
Ikeda, Masahiro [2 ,3 ]
Kadri, Hachem [4 ]
机构
[1] NTT Network Serv Syst Labs, Tokyo, Japan
[2] RIKEN AIP, Tokyo, Japan
[3] Keio Univ, Tokyo, Japan
[4] Aix Marseille Univ, CNRS, LIS, Marseille, France
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023) | 2023年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Reproducing kernel Hilbert C*-module (RKHM) is a generalization of reproducing kernel Hilbert space (RKHS) by means of C*-algebra, and the Perron-Frobenius operator is a linear operator related to the composition of functions. Combining these two concepts, we present deep RKHM, a deep learning framework for kernel methods. We derive a new Rademacher generalization bound in this setting and provide a theoretical interpretation of benign overfitting by means of Perron-Frobenius operators. By virtue of C*-algebra, the dependency of the bound on output dimension is milder than existing bounds. We show that C*-algebra is a suitable tool for deep learning with kernels, enabling us to take advantage of the product structure of operators and to provide a clear connection with convolutional neural networks. Our theoretical analysis provides a new lens through which one can design and analyze deep kernel methods.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] On the isolated spectrum of the Perron-Frobenius operator
    Dellnitz, M
    Froyland, G
    Sertl, S
    NONLINEARITY, 2000, 13 (04) : 1171 - 1188
  • [2] Symmetry of attractors and the Perron-Frobenius operator
    Mehta, Prashant G.
    Hessel-Von Molo, Mirko
    Dellnitz, Michael
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2006, 12 (11) : 1147 - 1178
  • [3] Convergence of dynamics and the Perron-Frobenius operator
    Gerlach, Moritz
    ISRAEL JOURNAL OF MATHEMATICS, 2018, 225 (01) : 451 - 463
  • [4] Transfer entropy computation using the Perron-Frobenius operator
    Diego, David
    Haaga, Kristian Agasoster
    Hannisdal, Bjarte
    PHYSICAL REVIEW E, 2019, 99 (04)
  • [5] SELF-CONSISTENT PERRON-FROBENIUS OPERATOR FOR SPATIOTEMPORAL CHAOS
    KANEKO, K
    PHYSICS LETTERS A, 1989, 139 (1-2) : 47 - 52
  • [6] Graph C*-algebras, branching systems and the Perron-Frobenius operator
    Goncalves, Daniel
    Royer, Danilo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 391 (02) : 457 - 465
  • [7] Analysis of the Type V Intermittency Using the Perron-Frobenius Operator
    Elaskar, Sergio
    del Rio, Ezequiel
    Schulz, Walkiria
    SYMMETRY-BASEL, 2022, 14 (12):
  • [8] Stability and collapse of the Lyapunov spectrum for Perron-Frobenius operator cocycles
    Gonzalez-Tokman, Cecilia
    Quas, Anthony
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2021, 23 (10) : 3419 - 3457
  • [9] Perron-Frobenius Operator Filter for Stochastic Dynamical Systems\ast
    Liu, Ningxin
    Jiang, Lijian
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2024, 12 (01): : 182 - 211
  • [10] PERRON-FROBENIUS PROPERTY FOR MULTIFUNCTIONS
    AUBIN, JP
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (20): : 911 - 914