circ-Erbb2ip from adipose-derived mesenchymal stem cell-derived exosomes promotes wound healing in diabetic mice by inducing the miR-670-5p/Nrf1 axis

被引:4
|
作者
Tang, Wenbo [1 ,2 ]
Du, Xiaoying [1 ,2 ]
Wu, Zifu [2 ]
Nie, Zhonglin [2 ]
Yu, Chaowen [2 ]
Gao, Yong [1 ,2 ]
机构
[1] Jinan Univ, Affiliated Hosp 1, Guangzhou 510632, Guangdong, Peoples R China
[2] Bengbu Med Coll, Affiliated Hosp 1, Bengbu 233000, Anhui, Peoples R China
关键词
Exosomes; Adipose -derived mesenchymal stem cells; miR-670-5p; Circ-Erbb2ip; Nrf1; FOOT ULCERS;
D O I
10.1016/j.cellsig.2024.111245
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Background: To investigate the mechanism of exosomes (Exo) secretion by hypoxic pretreated adipose-derived mesenchymal stem cells (ADSCs) promoting skin wound healing in diabetic (DM) mice. Methods: High-throughput sequencing was used to investigate abnormal expression of circRNA in hypoxic pretreatment ADSCs exosome (HExo) and ADSCs exosome (Exo). Bioinformatics analysis and luciferase reporting analysis were used to clarify the interacted relationship among circRNA, miRNA and mRNA. EPCs cells were employ to analysis the ROS, inflammatory cytokines expression, angiogenic differentiation function under hypoxic condition by using immunofluorescence, ELISA detection and tube forming experiment. DM ulceration mice model were constructed and the therapeutic effect of Exo were detected using immunohistochemistry, immunofluorescence. Results: The result show that HExo have more treatment effect than Exo in promotes cutaneous wound healing of DM mice. High-throughput sequencing found that circ-Erbb2ip play a role in HExo mediated tissues repair. Downregulation circ-Erbb2ip decreased the therapeutic effect of HExo to wound healing in diabetic mice. Bioinformatics analysis and luciferase reporting analysis confirmed that both miR-670-5p and Nrf1 were downstream targets of circ-Erbb2ip. Downregulation of Nrf1 or overexpression of miR-670-5p reversed the protective effect of circ-Erbb2ip to EPCs after exposure to high glucose microenvironment. Upregulation circ-Erbb2ip increased the therapeutic effect of Exo to wound healing in diabetic mice by increased angiogenesis and decreased ROS, inflammatory cytokines expression. Conclusion: In conclusion, ADSC-Exos containing circ-Erbb2ip promotes wound healing by targeting miR-670-5p/ Nrf1 pathway, and their effects in promoting soft tissue wound healing warrant further study.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Exosomes derived from mmu_circ_0000250-modified adipose-derived mesenchymal stem cells promote wound healing in diabetic mice by inducing miR-128-3p/SIRT1-mediated autophagy
    Shi, Rongfeng
    Jin, Yinpeng
    Hu, Weiwei
    Lian, Weishuai
    Cao, Chuanwu
    Han, Shilong
    Zhao, Suming
    Yuan, Hongxin
    Yang, Xiaohu
    Shi, Jiahai
    Zhao, Hui
    AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2020, 318 (05): : C848 - C856
  • [2] Adipose-Derived Mesenchymal Stem Cell-Derived Exosomes Biopotentiated Extracellular Matrix Hydrogels Accelerate Diabetic Wound Healing and Skin Regeneration
    Song, Yanling
    You, Yuchan
    Xu, Xinyi
    Lu, Jingyi
    Huang, Xiajie
    Zhang, Jucong
    Zhu, Luwen
    Hu, Jiahao
    Wu, Xiaochuan
    Xu, Xiaoling
    Tan, Weiqiang
    Du, Yongzhong
    ADVANCED SCIENCE, 2023, 10 (30)
  • [3] Exosomes from adipose-derived mesenchymal stem cell improve diabetic wound healing and inhibit fibrosis via miR-128-1-5p/TGF-β1/Smad axis
    Liang, Qiu
    Zhou, Danlian
    Ge, Xiuyu
    Song, Peijun
    Chu, Weiwei
    Xu, Jing
    Shen, Yan
    MOLECULAR AND CELLULAR ENDOCRINOLOGY, 2024, 588
  • [4] Adipose mesenchymal stem cell-derived exosomes promote skin wound healing in diabetic mice by regulating epidermal autophagy
    Ren, Haiyue
    Su, Peng
    Zhao, Feng
    Zhang, Qiqi
    Huang, Xing
    He, Cai
    Wu, Quan
    Wang, Zitong
    Ma, Jiajie
    Wang, Zhe
    BURNS & TRAUMA, 2024, 12
  • [5] Human acellular amniotic membrane incorporating exosomes from adipose-derived mesenchymal stem cells promotes diabetic wound healing
    Shune Xiao
    Chunfang Xiao
    Yong Miao
    Jin Wang
    Ruosi Chen
    Zhexiang Fan
    Zhiqi Hu
    Stem Cell Research & Therapy, 12
  • [6] Human acellular amniotic membrane incorporating exosomes from adipose-derived mesenchymal stem cells promotes diabetic wound healing
    Xiao, Shune
    Xiao, Chunfang
    Miao, Yong
    Wang, Jin
    Chen, Ruosi
    Fan, Zhexiang
    Hu, Zhiqi
    STEM CELL RESEARCH & THERAPY, 2021, 12 (01)
  • [7] Exosomes from adipose-derived stem cells regulate macrophage polarization and accelerate diabetic wound healing via the circ-Rps5/miR-124-3p axis
    Yin, Dongjing
    Shen, Guoliang
    IMMUNITY INFLAMMATION AND DISEASE, 2024, 12 (06)
  • [8] Exosomes from circ-Astn1-modified adipose-derived mesenchymal stem cells enhance wound healing through miR-138-5p/SIRT1/FOXO1 axis regulation
    Wang, Zhi
    Feng, Cheng
    Liu, Hao
    Meng, Tian
    Huang, Wei-Qing
    Song, Ke-Xin
    Wang, You-Bin
    WORLD JOURNAL OF STEM CELLS, 2023, 15 (05): : 476 - 489
  • [9] Hypoxia-induced adipose derived stem cells-derived exosomes promote diabetic wound healing through circ-0001747/miR-199a-5p/HIF-1α axis
    Wang, Zhi
    Feng, Cheng
    Liu, Hao
    Xia, Yijun
    Shan, Mengjie
    Hao, Yan
    ARCHIVES OF DERMATOLOGICAL RESEARCH, 2025, 317 (01)
  • [10] The bone mesenchymal stem cell-derived exosomal miR-146a-5p promotes diabetic wound healing in mice via macrophage M1/M2 polarization
    Zhou, Xijie
    Ye, Chenhao
    Jiang, Liangfu
    Zhu, Xuwei
    Zhou, Feiya
    Xia, Meizi
    Chen, Yiheng
    MOLECULAR AND CELLULAR ENDOCRINOLOGY, 2024, 579