Remaining useful life prediction method of rolling bearings based on improved 3σ and DBO-HKELM

被引:0
|
作者
Gao, Shuzhi [1 ]
Li, Zeqin [1 ,2 ]
Zhang, Yimin [1 ]
Zhang, Sixuan [1 ,3 ]
Zhou, Jin [1 ,3 ]
机构
[1] Shenyang Univ Chem Technol, Equipment Reliabil Inst, Shenyang 110142, Peoples R China
[2] Shenyang Univ Chem Technol, Coll Mech & Power Engn, Shenyang 110142, Peoples R China
[3] Shenyang Univ Chem Technol, Coll Informat Engn, Shenyang 110142, Peoples R China
基金
中国国家自然科学基金;
关键词
rolling bearing; remaining useful life; improved kernel principal component analysis; improved; 3; sigma; dung beetle optimization algorithm; hybrid kernel extreme learning machine;
D O I
10.1088/1361-6501/ad52b5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An improved 3 sigma method and dung beetle algorithm optimization hybrid kernel extreme learning machine-based (DBO-HKELM) approach for predicting the remaining useful life (RUL) of rolling bearings was suggested in order to increase prediction accuracy. Firstly, multi-dimensional degradation feature data is extracted from bearing vibration data. Considering the influence of noise signal on the prediction accuracy, an improved kernel principal component analysis method is proposed to reduce the noise of degraded features. Then, an improved 3 sigma method is proposed to determine the starting point of bearing degradation by combining bearing vibration signal data. Lastly, a DBO-HKELM life prediction model was put forth. The parameters of hybrid kernel extreme learning machine were optimized by dung beetle algorithm, and appropriate kernel parameters and regularization coefficient were selected. The feature set of degradation indicators is input into the trained model to output the bearing RUL prediction results starting from the determined degradation starting point. Multiple data sets were used to verify that the new RUL prediction method significantly improves the prediction accuracy.
引用
下载
收藏
页数:18
相关论文
共 50 条
  • [1] Prediction Method of Remaining Useful Life of Rolling Bearings Based on Improved GcForest
    Wang Y.
    Wang S.
    Kang S.
    Wang Q.
    Mikulovich V.I.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2020, 40 (15): : 5032 - 5042
  • [2] A Remaining Useful Life Prediction Method of Rolling Bearings Based on Deep Reinforcement Learning
    Zheng, Guokang
    Li, Yasong
    Zhou, Zheng
    Yan, Ruqiang
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (13): : 22938 - 22949
  • [3] Method for remaining useful life prediction of rolling bearings based on deep reinforcement learning
    Wang, Yipeng
    Li, Yonghua
    Lu, Hang
    Wang, Denglong
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2024, 95 (09):
  • [4] A Feature Fusion-Based Method for Remaining Useful Life Prediction of Rolling Bearings
    Liu, Jie
    Yang, Zian
    Xie, Jingsong
    Wang, Ruijie
    Liu, Shanhui
    Xi, Darun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [5] An Improved Fusion Prognostics Method for Remaining Useful Life Prediction of Bearings
    Wang, Biao
    Lei, Yaguo
    Li, Naipeng
    Lin, Jing
    2017 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2017, : 18 - 24
  • [6] A Synthetic Feature Processing Method for Remaining Useful Life Prediction of Rolling Bearings
    Mi, Jinhua
    Liu, Lulu
    Zhuang, Yonghao
    Bai, Libing
    Li, Yan-Feng
    IEEE TRANSACTIONS ON RELIABILITY, 2023, 72 (01) : 125 - 136
  • [7] Contrastive Generative Replay Method of Remaining Useful Life Prediction for Rolling Bearings
    Wang, Tiancheng
    Guo, Di
    Sun, Xi-Ming
    IEEE SENSORS JOURNAL, 2023, 23 (19) : 23893 - 23902
  • [8] Remaining Useful Life Prediction Method for Rolling Bearings Based on CBAM-CNN-BiLSTM
    Zhou, Honggen
    Ren, Xiaodie
    Sun, Li
    Li, Guochao
    Liu, Yinfei
    2023 IEEE 12TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE, DDCLS, 2023, : 147 - 154
  • [9] A Nonlinear Degradation Model Based Method for Remaining Useful Life Prediction of Rolling Element Bearings
    Lei, Yaguo
    Li, Naipeng
    Jia, Feng
    Lin, Jing
    Xing, Saibo
    2015 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM), 2015,
  • [10] Remaining useful life prediction method for rolling bearings based on hybrid dilated convolution transfer
    Zhang, Bo
    Hu, Changhua
    Zhang, Hao
    Zheng, Jianfei
    Zhang, Jianxun
    Pei, Hong
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2024, 40 (06) : 3018 - 3036