Physiological and molecular responses of stress sensitive and tolerant banana genotypes to drought heat and their combination

被引:0
|
作者
Chaudhari, R. S. [1 ]
Jangale, B. L. [1 ]
Sane, A. P. [2 ]
Sane, P. V. [1 ]
Krishna, B. [1 ]
机构
[1] Jain Irrigat Syst Ltd, Plant Mol Biol Lab, Jain R&D Lab, Agri Pk,Jain Hills,Shirsoli Rd, Jalgaon 425001, Maharashtra, India
[2] CSIR Natl Bot Res Inst, Plant Gene Express Lab, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India
关键词
'Grand Nain'; 'Hill Banana'; abiotic stress; abscisic acid; combined stress; DREB; NAC; transcription factors; TRANSCRIPTION FACTORS; FAMILY; TIME;
D O I
10.17660/ActaHortic.2023.1372.5
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Individual drought and heat stresses affect the growth, development and productivity of crops and their combination reduces productivity even further. In banana, combined stress caused 100% yield loss of 'Grand Nain' (GN, AAA genome) genotype, while the yield loss was only 46% in 'Hill Banana' (HB, AAB genome). We have compared physiological and molecular responses of these two contrasting banana genotypes under individual drought, heat and their combined stress under controlled as well as in open field conditions. Individual drought and combined stress caused higher reduction in leaf relative water content, increased ion leakage and H2O2 content in GN plants as compared to HB plants. However, individual heat stress resulted in minimum changes in physiological parameters. Furthermore, the expression of DREB (A-1 and A-2 group) and stress responsive NAC genes revealed higher background molecular responses in leaves of HB plants for individual stresses as compared to GN plants. However, combination of heat and drought stress suppressed their expressions in HB but activated them in GN. Interestingly, the expression of the DREB and stress responsive NAC genes was blocked in the drought tolerant HB even when subjected to combined drought and heat stress in field, unlike in GN. Most of these genes were strongly upregulated within 30-60 min upon application of exogenous abscisic acid (ABA) and the increase was prominent in GN. This response in HB was associated with better stomatal control over transpiration thus avoiding the need for stress pathway activation unlike in GN. The study suggests that the B genome in the stress-tolerant HB may be responsible for tolerating more drastic combined stresses without taking recourse to the expression of DREB (A-1 and A-2 group) and stress responsive NAC genes.
引用
收藏
页码:33 / 41
页数:9
相关论文
共 50 条
  • [1] Drought stress response in maize: molecular, morphological and physiological analysis of tolerant and sensitive genotypes
    Klimesova, Jana
    Holkova, Ludmila
    Streda, Tomas
    MAYDICA, 2020, 65 (01):
  • [2] Molecular and physiological responses of two quinoa genotypes to drought stress
    Zhu, Xiaolin
    Liu, Wenyu
    Wang, Baoqiang
    Yang, Ling
    FRONTIERS IN GENETICS, 2024, 15
  • [3] Physiological and molecular signatures reveal differential response of rice genotypes to drought and drought combination with heat and salinity stress
    Chhaya Yadav
    Rajeev Nayan Bahuguna
    Om Parkash Dhankher
    Sneh L. Singla-Pareek
    Ashwani Pareek
    Physiology and Molecular Biology of Plants, 2022, 28 : 899 - 910
  • [4] Physiological and molecular signatures reveal differential response of rice genotypes to drought and drought combination with heat and salinity stress
    Yadav, Chhaya
    Bahuguna, Rajeev Nayan
    Dhankher, Om Parkash
    Singla-Pareek, Sneh L.
    Pareek, Ashwani
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2022, 28 (04) : 899 - 910
  • [5] Physiological Responses of Almond Genotypes to Drought Stress
    Gohari, S.
    Imani, A.
    Talaei, A. R.
    Abdossi, V.
    Asghari, M. R.
    RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2023, 70 (06)
  • [6] Physiological Responses of Almond Genotypes to Drought Stress
    S. Gohari
    A. Imani
    A. R. Talaei
    V. Abdossi
    M. R. Asghari
    Russian Journal of Plant Physiology, 2023, 70
  • [7] Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes
    Rampino, Patrizia
    Pataleo, Stefano
    Gerardi, Carmela
    Mita, Giovanni
    Perrotta, Carla
    PLANT CELL AND ENVIRONMENT, 2006, 29 (12): : 2143 - 2152
  • [8] IDENTIFICATION OF DISTINCTIVE AGRO-PHYSIOLOGICAL AND MOLECULAR RESPONSES TO SEAWATER STRESS AMONG TOLERANT AND SENSITIVE GENOTYPES OF BARLEY
    Mariey, Samah A.
    Khatab, Ismael A.
    Mousa, Esraa H.
    Alyamani, Amal
    Farid, Mona A.
    FRESENIUS ENVIRONMENTAL BULLETIN, 2022, 31 (10): : 9988 - 10006
  • [9] Eco-physiological response to water stress of drought-tolerant and drought-sensitive tomato genotypes
    Rigano, M. M.
    Arena, C.
    Di Matteo, A.
    Sellitto, S.
    Frusciante, L.
    Barone, A.
    PLANT BIOSYSTEMS, 2016, 150 (04): : 682 - 691
  • [10] Physiological and molecular responses of two Chinese cabbage genotypes to heat stress
    Song, Q.
    Yang, F.
    Cui, B.
    Li, J.
    Zhang, Y.
    Li, H.
    Qiu, N.
    Wang, F.
    Gao, J.
    BIOLOGIA PLANTARUM, 2019, 63 : 548 - 555