EdgeCluster: A Resource-Aware Evolving Clustering for Streaming Data

被引:0
|
作者
Angelova, Milena [1 ]
Boeva, Veselka [1 ]
Abghari, Shahrooz [1 ]
机构
[1] Blekinge Inst Technol, Dept Comp Sci, Karlskrona, Sweden
关键词
evolving clustering; data mining; smart monitoring; concept drift; VALIDATION; WINDOWS;
D O I
10.1109/EAIS58494.2024.10569997
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a novel evolving clustering algorithm for streaming data entitled EdgeCluster. The proposed algorithm is resource efficient, making it suitable for use at edge devices with limited storage and computational capacity. The EdgeCluster is capable of modeling and monitoring a streaming data phenomenon and identifying outlying behavior. In parallel with the monitoring, the EdgeCluster algorithm dynamically maintains the set of clusters that models the phenomenon's normal behavioral scenarios by taking newly arrived data into account and updating the clustering model accordingly. The EdgeCluster algorithm is evaluated and benchmarked to another resource-aware stream clustering algorithm, EvolveCluster, in two experimental data scenarios using synthetic and real-world datasets.
引用
收藏
页码:15 / 24
页数:10
相关论文
共 50 条
  • [1] Ubiquitous Resource-Aware Clustering of Data Streams
    Chao, Ching-Ming
    Chao, Guan-Lin
    ENTERPRISE INFORMATION SYSTEMS, ICEIS 2011, 2012, 102 : 81 - 97
  • [2] Resource-Aware High Quality Clustering in Ubiquitous Data Streams
    Chao, Ching-Ming
    Chao, Guan-Lin
    JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 2011, 14 (04): : 369 - 378
  • [3] RESOURCE-AWARE HIGH QUALITY CLUSTERING IN UBIQUITOUS DATA STREAMS
    Chao, Ching-Ming
    Chao, Guan-Lin
    ICEIS 2011: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS, VOL 1, 2011, : 64 - 73
  • [4] A gambling approach to scalable resource-aware streaming
    Allani, Mouna
    Garbinato, Benoit
    Pedone, Fernando
    Stamenkovic, Marij A.
    SRDS 2007: 26TH IEEE INTERNATIONAL SYMPOSIUM ON RELIABLE DISTRIBUTED SYSTEMS, PROCEEDINGS, 2007, : 288 - +
  • [5] A Resource-Aware Method for Parallel D2D Data Streaming
    Saganowski, Stanislaw
    Kazienko, Przemyslaw
    COMPUTATIONAL COLLECTIVE INTELLIGENCE (ICCCI 2021), 2021, 12876 : 696 - 707
  • [6] Cluster Kernels: Resource-aware kernel density estimators over streaming data
    Heinz, Christoph
    Seeger, Bernhard
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2008, 20 (07) : 880 - 893
  • [7] Special issue on resource-aware adaptive video streaming
    Lin, Chia-Wen
    Magli, Enrico
    Turaga, Deepak
    Frossard, Pascal
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2008, 19 (08) : 471 - 472
  • [8] Resource-aware mining of data streams
    Gaber, MM
    Krishnaswamy, S
    Zaslavsky, A
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2005, 11 (08) : 1440 - 1453
  • [9] A reconfigurable, on-the-fly, resource-aware, streaming pipeline scheduler
    Bradshaw, MK
    Kurose, J
    Page, LJ
    Shenoy, P
    Towsley, D
    Multimedia Computing and Networking 2005, 2005, 5680 : 131 - 135
  • [10] Resource-Aware Data Parallel Array Processing
    Clemens Grelck
    Cédric Blom
    International Journal of Parallel Programming, 2020, 48 : 652 - 674