Dynamic Multiplexed Control and Modeling of Optogenetic Systems Using the High-Throughput Optogenetic Platform, Lustro

被引:0
|
作者
Harmer, Zachary P. [1 ]
Thompson, Jaron C. [2 ,3 ]
Cole, David L. [2 ]
Venturelli, Ophelia S. [1 ,2 ,3 ,4 ]
Zavala, Victor M. [2 ,5 ]
Mcclean, Megan N. [1 ,6 ]
机构
[1] Univ Wisconsin, Dept Biomed Engn, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA
[3] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA
[4] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA
[5] Argonne Natl Lab, Math & Comp Sci Div, Lemont, IL 60439 USA
[6] Univ Wisconsin, Carbone Canc Ctr, Sch Med & Publ Hlth, Madison, WI 53706 USA
来源
ACS SYNTHETIC BIOLOGY | 2024年 / 13卷 / 05期
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
optogenetics; automation; MoClo; yeast; high throughput; synthetic transcriptionfactors; neural network; modeling; machinelearning; multiplexing; GENE-EXPRESSION; SPATIOTEMPORAL CONTROL; PROTEIN INTERACTIONS; INDUCTION; CELLS;
D O I
10.1021/acssynbio.3c00761
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The ability to control cellular processes using optogenetics is inducer-limited, with most optogenetic systems responding to blue light. To address this limitation, we leverage an integrated framework combining Lustro, a powerful high-throughput optogenetics platform, and machine learning tools to enable multiplexed control over blue light-sensitive optogenetic systems. Specifically, we identify light induction conditions for sequential activation as well as preferential activation and switching between pairs of light-sensitive split transcription factors in the budding yeast, Saccharomyces cerevisiae. We use the high-throughput data generated from Lustro to build a Bayesian optimization framework that incorporates data-driven learning, uncertainty quantification, and experimental design to enable the prediction of system behavior and the identification of optimal conditions for multiplexed control. This work lays the foundation for designing more advanced synthetic biological circuits incorporating optogenetics, where multiple circuit components can be controlled using designer light induction programs, with broad implications for biotechnology and bioengineering.
引用
收藏
页码:1424 / 1433
页数:10
相关论文
共 50 条
  • [1] Lustro: High-Throughput Optogenetic Experiments Enabled by Automation and a Yeast Optogenetic Toolkit
    Harmer, Zachary P. P.
    McClean, Megan N. N.
    [J]. ACS SYNTHETIC BIOLOGY, 2023, 12 (07): : 1943 - 1951
  • [2] Lustro: High-Throughput Optogenetic Experiments Enabled by Automation and a Yeast Optogenetic Toolkit (vol 12, pg 1943, 2023)
    Harmer, Zachary P.
    Mcclean, Megan N.
    [J]. ACS SYNTHETIC BIOLOGY, 2023, 12 (11): : 3505 - 3505
  • [3] Optogenetic high-throughput screening
    Brenker, Kathrin
    Jakob, Annik
    Koebele, Luis
    [J]. EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2021, 50 (SUPPL 1): : 139 - 139
  • [4] High-Throughput Optogenetics Experiments in Yeast Using the Automated Platform Lustro
    Harmer, Zachary P.
    McClean, Megan N.
    [J]. JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2023, (198):
  • [5] Optogenetic Microwell Array Screening System: A High-Throughput Engineering Platform for Genetically Encoded Fluorescent Indicators
    Rappleye, Michael
    Wait, Sarah J.
    Lee, Justin Daho
    Siebart, Jamison C.
    Torp, Lily
    Smith, Netta
    Muster, Jeanot
    Matreyek, Kenneth A.
    Fowler, Douglas M.
    Berndt, Andre
    [J]. ACS SENSORS, 2023, 8 (11) : 4233 - 4244
  • [6] High-throughput optogenetic functional magnetic resonance imaging with parallel computations
    Fang, Zhongnan
    Lee, Jin Hyung
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2013, 218 (02) : 184 - 195
  • [7] Modeling and control of high-throughput screening systems
    Brunsch, T.
    Raisch, J.
    Hardouin, L.
    [J]. CONTROL ENGINEERING PRACTICE, 2012, 20 (01) : 14 - 23
  • [8] High-throughput feedback-enabled optogenetic stimulation and spectroscopy in microwell plates
    William Benman
    Saachi Datta
    David Gonzalez-Martinez
    Gloria Lee
    Juliette Hooper
    Grace Qian
    Gabrielle Leavitt
    Lana Salloum
    Gabrielle Ho
    Sharvari Mhatre
    Michael S. Magaraci
    Michael Patterson
    Sevile G. Mannickarottu
    Saurabh Malani
    Jose L. Avalos
    Brian Y. Chow
    Lukasz J. Bugaj
    [J]. Communications Biology, 6
  • [9] High-throughput feedback-enabled optogenetic stimulation and spectroscopy in microwell plates
    Benman, William
    Datta, Saachi
    Gonzalez-Martinez, David
    Lee, Gloria
    Hooper, Juliette
    Qian, Grace
    Leavitt, Gabrielle
    Salloum, Lana
    Ho, Gabrielle
    Mhatre, Sharvari
    Magaraci, Michael S.
    Patterson, Michael
    Mannickarottu, Sevile G.
    Malani, Saurabh
    Avalos, Jose L.
    Chow, Brian Y.
    Bugaj, Lukasz J.
    [J]. COMMUNICATIONS BIOLOGY, 2023, 6 (01)
  • [10] A Microfluidic Platform for High-Throughput Multiplexed Protein Quantitation
    Volpetti, Francesca
    Garcia-Cordero, Jose
    Maerkl, Sebastian J.
    [J]. PLOS ONE, 2015, 10 (02):