GPU Code Generation of Cardiac Electrophysiology Simulation with MLIR

被引:1
|
作者
Jost, Tiago Trevisan
Thangamani, Arun
Colin, Raphael
Loechner, Vincent [1 ]
Genaud, Stephane
Bramas, Berenger
机构
[1] Univ Strasbourg, Inria Nancy Grand Est, Strasbourg, France
来源
基金
欧盟地平线“2020”;
关键词
automatic GPU code generation; code transformation; MLIR; domain-specific languages; heterogeneous architectures;
D O I
10.1007/978-3-031-39698-4_37
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We show the benefits of the novel MLIR compiler technology to the generation of code from a DSL, namely EasyML used in openCARP, a widely used simulator in the cardiac electrophysiology community. Building on an existing work that deeply modified openCARP's native DSL code generator to enable efficient vectorized CPU code, we extend the code generation for GPUs (Nvidia CUDA and AMD ROCm). Generating optimized code for different accelerators requires specific optimizations and we review how MLIR has been used to enable multi-target code generation from an integrated generator. Experiments conducted on the 48 ionic models provided by openCARP show that the GPU code executes 3.17x faster and delivers more than 7x FLOPS per watt than the vectorized CPU code, on an Nvidia A100 GPU versus a 36-cores AVX-512 Intel CPU.
引用
收藏
页码:549 / 563
页数:15
相关论文
共 50 条
  • [1] MLIR-Based Code Generation for GPU Tensor Cores
    Katel, Navdeep
    Khandelwal, Vivek
    Bondhugula, Uday
    [J]. CC'22: PROCEEDINGS OF THE 31ST ACM SIGPLAN INTERNATIONAL CONFERENCE ON COMPILER CONSTRUCTION, 2022, : 117 - 128
  • [2] Fast Template-Based Code Generation for MLIR
    Drescher, Florian
    Engelke, Alexis
    [J]. PROCEEDINGS OF THE 33RD ACM SIGPLAN INTERNATIONAL CONFERENCE ON COMPILER CONSTRUCTION, CC 2024, 2024, : 1 - 12
  • [3] GPU Acceleration of Optical Mapping Algorithm for Cardiac Electrophysiology
    Meng, Pingfan
    Irturk, Ali
    Kastner, Ryan
    McCulloch, Andrew
    Omens, Jeffrey
    Wright, Adam
    [J]. 2012 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2012, : 1558 - 1561
  • [4] Automatic Multi-GPU Code Generation Applied to Simulation of Electrical Machines
    Rodrigues, A. Wendell O.
    Guyomarc'h, Frederic
    Dekeyser, Jean-Luc
    Le Menach, Yvonnick
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2012, 48 (02) : 831 - 834
  • [5] Simulation of cardiac electrophysiology and electrocardiography
    Sachse, FB
    Werner, C
    Seeman, G
    [J]. COMPUTER SIMULATION AND EXPERIMENTAL ASSESSMENT OF CARDIAC ELECTROPHYSIOLOGY, 2001, : 97 - 104
  • [6] Program Code Generator for Cardiac Electrophysiology Simulation with Automatic PDE Boundary Condition Handling
    Punzalan, Florencio Rusty
    Kunieda, Yoshitoshi
    Amano, Akira
    [J]. PLOS ONE, 2015, 10 (09):
  • [7] Simulation of cardiac electrophysiology on next-generation high-performance computers
    Bordas, Rafel
    Carpentieri, Bruno
    Fotia, Giorgio
    Maggio, Fabio
    Nobes, Ross
    Pitt-Francis, Joe
    Southern, James
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 367 (1895): : 1951 - 1969
  • [8] PhotoNs-GPU: A GPU accelerated cosmological simulation code
    Qiao Wang
    Chen Meng
    [J]. Research in Astronomy and Astrophysics, 2021, 21 (11) : 106 - 112
  • [9] PhotoNs-GPU: A GPU accelerated cosmological simulation code
    Wang, Qiao
    Meng, Chen
    [J]. RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2021, 21 (11)
  • [10] Simulating Cardiac Electrophysiology in the Era of GPU-Cluster Computing
    Chai, Jun
    Wen, Mei
    Wu, Nan
    Huang, Dafei
    Yang, Jing
    Cai, Xing
    Zhang, Chunyuan
    Yang, Qianming
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2013, E96D (12) : 2587 - 2595