Fractal quintic spline solutions for singularly perturbed reaction-diffusion boundary-value problems

被引:0
|
作者
Balasubramani, N. [1 ]
Prasad, M. Guru Prem [2 ]
Natesan, S. [2 ]
机构
[1] Natl Inst Technol Tiruchirappalli, Dept Math, Tiruchirappalli 620015, India
[2] Indian Inst Technol Guwahati, Dept Math, Gauhati 781039, India
关键词
Boundary-value problems; Fractal quintic spline; Convergence analysis;
D O I
10.1016/j.apnum.2024.04.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, with the help of fractal quintic spline, numerical solutions of singularly perturbed boundary value problem of ordinary differential equations are obtained. To check the accuracy of the proposed method, convergence analysis is derived. The developed method has fourth order convergence. To check the correctness of the proposed method, numerical examples are provided.
引用
收藏
页码:89 / 99
页数:11
相关论文
共 50 条
  • [1] Quintic Spline Methods for the Solution of Singularly Perturbed Boundary-Value Problems
    Rashidinia, J.
    Mohammadi, R.
    Moatamedoshariati, S. H.
    [J]. INTERNATIONAL JOURNAL FOR COMPUTATIONAL METHODS IN ENGINEERING SCIENCE & MECHANICS, 2010, 11 (05): : 247 - 257
  • [2] QUINTIC SPLINE SOLUTIONS OF BOUNDARY-VALUE PROBLEMS
    USMANI, RA
    WARSI, SA
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1980, 6 (02) : 197 - 203
  • [3] Fractal Quintic Spline Solutions for Fourth-Order Boundary-Value Problems
    Balasubramani N.
    Guru Prem Prasad M.
    Natesan S.
    [J]. International Journal of Applied and Computational Mathematics, 2019, 5 (5)
  • [4] A Robust computational method for singularly perturbed coupled system of reaction-diffusion boundary-value problems
    Natesan, Srinivasan
    Deb, Briti Sundar
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2007, 188 (01) : 353 - 364
  • [5] A Uniformly Convergent NIPG Method for a Singularly Perturbed System of Reaction-Diffusion Boundary-Value Problems
    Singh, Gautam
    Natesan, Srinivasan
    [J]. MATHEMATICS AND COMPUTING (ICMC 2018), 2018, 253 : 429 - 440
  • [6] Quintic spline approach to the solution of a singularly-perturbed boundary-value problem
    Aziz, T
    Khan, A
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2002, 112 (03) : 517 - 527
  • [7] Quintic Spline Approach to the Solution of a Singularly-Perturbed Boundary-Value Problem
    T. Aziz
    A. Khan
    [J]. Journal of Optimization Theory and Applications, 2002, 112 : 517 - 527
  • [8] Fractal quintic spline method for nonlinear boundary-value problems
    Balasubramani, N.
    Prasad, M. Guru Prem
    Natesan, S.
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (06): : 1885 - 1903
  • [9] Sextic spline solution of a singularly perturbed boundary-value problems
    Khan, Arshad
    Khan, Islam
    Aziz, Tariq
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2006, 181 (01) : 432 - 439
  • [10] On Convergence of Solutions of Singularly Perturbed Boundary-Value Problems
    Anoshchenko, O.
    Lysenko, O.
    Khruslov, E.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2009, 5 (02) : 115 - 122