Aircraft Engine Remaining Useful Life Prediction using neural networks and real-life engine operational data

被引:10
|
作者
Szrama, Slawomir [1 ]
Lodygowski, Tomasz [1 ]
机构
[1] Poznan Univ Tech, Aviat Div, Piotrowo 3, PL-60965 Poznan, Poland
关键词
prognostic health monitoring; engine remaining useful life; artificial neural network; aircraft turbofan engine; engine health status prediction;
D O I
10.1016/j.advengsoft.2024.103645
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Aircraft Engine Remaining Useful Life is a key factor which strongly affects flight operations safety and flight operators business decisions. In the article authors decided to present the concept of engine remaining useful life prediction. Proposed method was created as a result of the analysis of the real turbofan engine operational data collected for a few years which was used as an input data for the deep neural network, in order to train, validate and test machine learning algorithms. Two architectures of deep neural networks were created: multilayered deep convolutional neural networks and a long short-term memory network with regression output. Both neural networks were trained, validated and tested on the same engine data and with a various network training options. Results were compared with the neural network performance metrics and figures presenting network prediction convergence. To present how the real-life engine dataset differs the results from the simulated data, both datasets were validated on the same neural network architectures. The main purpose of this article was to present the idea and method of how the artificial neural networks could be used to predict aircraft remaining useful life indicator on the real-life engine operational data not the simulated one.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Remaining Useful Life Prediction of an Aircraft Turbofan Engine Using Deep Layer Recurrent Neural Networks
    Thakkar, Unnati
    Chaoui, Hicham
    ACTUATORS, 2022, 11 (03)
  • [2] Deep Bidirectional Recurrent Neural Networks Ensemble for Remaining Useful Life Prediction of Aircraft Engine
    Hu, Kui
    Cheng, Yiwei
    Wu, Jun
    Zhu, Haiping
    Shao, Xinyu
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (04) : 2531 - 2543
  • [3] Health indicator construction and remaining useful life prediction for aircraft engine
    Peng K.-X.
    Pi Y.-T.
    Jiao R.-H.
    Tang P.
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2020, 37 (04): : 713 - 720
  • [4] Remaining Useful Life Estimation of Turbofan Engine Using LSTM Neural Networks
    Lan, Guoxing
    Li, Qing
    Cheng, Nong
    2018 IEEE CSAA GUIDANCE, NAVIGATION AND CONTROL CONFERENCE (CGNCC), 2018,
  • [5] Remaining useful life prediction of aircraft engine based on degradation pattern learning
    Zhao, Zeqi
    Bin Liang
    Wang, Xueqian
    Lu, Weining
    Reliability Engineering and System Safety, 2017, 164 : 74 - 83
  • [6] Remaining useful life prediction of aircraft engine based on degradation pattern learning
    Zhao, Zeqi
    Liang, Bin
    Wang, Xueqian
    Lu, Weining
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2017, 164 : 74 - 83
  • [7] Remaining useful life prediction for aircraft engine based on LSTM-DBN
    Li J.
    Chen Y.
    Xiang H.
    Cai Z.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2020, 42 (07): : 1637 - 1644
  • [8] Bayesian Neural Network Based Method of Remaining Useful Life Prediction and Uncertainty Quantification for Aircraft Engine
    Huang, Dengshan
    Bai, Rui
    Zhao, Shuai
    Wen, Pengfei
    Wang, Shengyue
    Chen, Shaowei
    2020 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2020,
  • [9] Remaining useful life prediction of the aircraft engine and its uncertainty quantification based on ConvJANET
    Miao Y.
    Li C.
    Shi H.
    Lin J.
    Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2023, 53 (07): : 1189 - 1201
  • [10] MHT: A multiscale hourglass-transformer for remaining useful life prediction of aircraft engine
    Guo, Jun
    Lei, Shicheng
    Du, Baigang
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 128