Trajectory prediction method for agricultural tracked robots based on slip parameter estimation

被引:3
|
作者
Zhao, Xin [1 ]
Lu, En [1 ]
Tang, Zhong [1 ]
Luo, Chengming [2 ]
Xu, Lizhang [1 ]
Wang, Hui [1 ]
机构
[1] Jiangsu Univ, Sch Agr Engn, 301 Xuefu Rd, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Jiangsu Univ Sci & Technol, Ocean Coll, 2 Mengxi Rd, Zhenjiang 212003, Jiangsu, Peoples R China
关键词
Tracked robot; Trajectory prediction; Slip parameter estimation; Sliding mode observer; Extended Kalman filter;
D O I
10.1016/j.compag.2024.109057
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
The trajectory prediction of tracked robots is the foundation and prerequisite for trajectory tracking and autonomous precise navigation. The kinematic model of the agricultural tracked robot considering the slips (slippages and slip-rotation) between the tracks and the soil is established by analyzing the slip and turning characteristics. The extended Kalman filter (EKF) method and the improved sliding mode observer (ISMO) method are respectively used to estimate the slip parameters of the agricultural tracked robot during the driving process. Subsequently, the driving trajectory of the agricultural tracked robot is predicted for a future time period, in combination with the provided control sequence. Finally, simulation and experimental results show that the proposed trajectory prediction method for agricultural tracked robots, which integrates slip parameter estimation, significantly reduces trajectory prediction errors. Moreover, the proposed ISMO method outperforms the traditional EKF method in terms of slip parameter estimation and driving trajectory prediction. The research in this paper provides theoretical guidance for trajectory planning and tracking control of agricultural tracked robots, and has broad application prospects.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A Sliding Parameter Estimation Method Based On UKF For Agricultural Tracked Robot
    Jiao, Jun
    Zhang, Youhua
    Sun, Li
    Qiao, Yan
    Kong, Wen
    Yuan, Chenchen
    2014 2ND INTERNATIONAL CONFERENCE ON SYSTEMS AND INFORMATICS (ICSAI), 2014, : 277 - 282
  • [2] Adaptive backstepping control of tracked robot running trajectory based on real-time slip parameter estimation
    Lu, En
    Ma, Zheng
    Li, Yaoming
    Xu, Lizhang
    Tang, Zhong
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND BIOLOGICAL ENGINEERING, 2020, 13 (04) : 178 - 187
  • [3] An Adaptive Observer approach to Slip Estimation for Agricultural Tracked Vehicles
    Tazzari, Roberto
    Azzollini, Ilario A.
    Marconi, Lorenzo
    2021 EUROPEAN CONTROL CONFERENCE (ECC), 2021, : 1591 - 1596
  • [4] Slid parameter estimates for tracked vehicles with trajectory prediction compensation
    Li R.
    Li C.
    Su J.
    Chen L.
    Qin Z.
    Bian Y.
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2022, 62 (01): : 133 - 140
  • [5] Online Slip Parameter Estimation for Tracked Vehicle Odometry on Loose Slope
    Yamauchi, Genki
    Suzuki, Daiki
    Nagatani, Keiji
    2016 IEEE INTERNATIONAL SYMPOSIUM ON SAFETY, SECURITY, AND RESCUE ROBOTICS (SSRR), 2016, : 227 - 232
  • [6] Slip Estimation Methods for Proprioceptive Terrain Classification using Tracked Mobile Robots
    Masha, Ditebogo
    Burke, Michael
    Twala, Bhekisipho
    2017 PATTERN RECOGNITION ASSOCIATION OF SOUTH AFRICA AND ROBOTICS AND MECHATRONICS (PRASA-ROBMECH), 2017, : 150 - 152
  • [7] Sparse Trajectory Prediction Method Based on Entropy Estimation
    Zhang, Lei
    Liu, Leijun
    Li, Wen
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2016, E99D (06): : 1474 - 1481
  • [8] Trajectory and slip inference on a cleaning mobile robot using simultaneous parameter and state estimation method
    Nemoto, Takuma
    Elara, Mohan Rajesh
    JOURNAL OF ADVANCED SIMULATION IN SCIENCE AND ENGINEERING, 2019, 6 (01): : 157 - 176
  • [9] A Ground Parameter Estimation Method for Independent Electric Tracked Vehicle
    Liang W.
    Chen H.
    Wang B.
    Binggong Xuebao/Acta Armamentarii, 2019, 40 (06): : 1146 - 1153
  • [10] A novel method for slip prediction of walking biped robots
    Hashlamon, Iyad
    Gulhan, Mehmet Mert
    Ayit, Orhan
    Erbatur, Kemalettin
    ROBOTICA, 2017, 35 (04) : 766 - 786