Numerical simulation of fractional-order Duffing system with extended Mittag-Leffler derivatives

被引:3
|
作者
Odibat, Zaid [1 ]
机构
[1] Al Balqa Appl Univ, Fac Sci, Dept Math, Salt 19117, Jordan
关键词
fractional oscillator; Duffing system; Caputo derivative; Mittag-Leffler derivative; predictor-corrector method;
D O I
10.1088/1402-4896/ad505c
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we studied the dynamics of a nonlinear fractional-order Duffing system combined with Mittag-Leffler derivatives in order to provide dynamic behaviors different from existing ones. The Mittag-Leffler derivative is a generalized version of the exponential kernel derivative. To achieve this goal, we introduced a modified extension to higher-order Mittag-Leffler derivatives to overcome the initialization problem. Moreover, we discussed some properties and relationships of the studied derivatives. Then we presented numerical schemes to handle fractional extensions of the considered oscillatory system including the Mittag-Leffler and the Caputo derivatives. Numerical simulations are carried out and the resulting simulation dynamics of the studied fractional oscillatory system are compared.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A Mittag-Leffler fractional-order difference observer
    Miguel Delfin-Prieto, Sergio
    Martinez-Guerra, Rafael
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2020, 357 (05): : 2997 - 3018
  • [2] Mittag-Leffler stability and generalized Mittag-Leffler stability of fractional-order gene regulatory networks
    Ren, Fengli
    Cao, Feng
    Cao, Jinde
    NEUROCOMPUTING, 2015, 160 : 185 - 190
  • [3] Robust Mittag-Leffler stabilisation of fractional-order systems
    Jonathan Munoz-Vazquez, Aldo
    Parra-Vega, Vicente
    Sanchez-Orta, Anand
    Martinez-Reyes, Fernando
    ASIAN JOURNAL OF CONTROL, 2020, 22 (06) : 2273 - 2281
  • [4] Mittag-Leffler stability of fractional-order Hopfield neural networks
    Zhang, Shuo
    Yu, Yongguang
    Wang, Hu
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2015, 16 : 104 - 121
  • [5] Mittag-Leffler synchronization of fractional-order uncertain chaotic systems
    Wang Qiao
    Ding Dong-Sheng
    Qi Dong-Lian
    CHINESE PHYSICS B, 2015, 24 (06)
  • [6] Mittag-Leffler Stability of Homogeneous Fractional-Order Systems With Delay
    Lien, Nguyen Thi
    Hien, Le Van
    Thang, Nguyen Nhu
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 3243 - 3248
  • [7] FRACTIONAL-ORDER EXTREME LEARNING MACHINE WITH MITTAG-LEFFLER DISTRIBUTION
    Niu, Haoyu
    Chen, Yuquan
    Chen, YangQuan
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2019, VOL 9, 2019,
  • [8] Mittag-Leffler stability for a new coupled system of fractional-order differential equations on network
    Gao, Yang
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [9] Modeling fractional-order dynamics of Syphilis via Mittag-Leffler law
    Bonyah, E.
    Chukwu, C. W.
    Juga, M. L.
    Fatmawati
    AIMS MATHEMATICS, 2021, 6 (08): : 8367 - 8389
  • [10] Adaptive Mittag-Leffler stabilization of commensurate fractional-order nonlinear systems
    Ding, Dongsheng
    Qi, Donglian
    Meng, Yao
    Xu, Li
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 6920 - 6926