DanceCam: atmospheric turbulence mitigation in wide-field astronomical images with short-exposure video streams

被引:1
|
作者
Bialek, Spencer [1 ,2 ]
Bertin, Emmanuel [2 ,3 ]
Fabbro, Sebastien [1 ,4 ]
Bouy, Herve [5 ,6 ]
Rivet, Jean-Pierre [7 ]
Lai, Olivier [7 ]
Cuillandre, Jean-Charles [3 ]
机构
[1] Univ Victoria, Dept Phys & Astron, Victoria, BC V8W 3P2, Canada
[2] Canada France Hawaii Telescope, Kamuela, HI 96743 USA
[3] Univ Paris Cite, Univ Paris Saclay, CNRS, CEA,AIM, F-91191 Gif sur Yvette, France
[4] Natl Res Council Herzberg Astron & Astrophys, Victoria, BC V9E 2E7, Canada
[5] CNRS, Lab Astrophys Bordeaux, Allee Geoffroy St Hilaire, F-33165 Pessac, France
[6] Inst Univ France, Paris, France
[7] Univ Cote Azur, CNRS, Observ Cote Azur, Lab JL Lagrange, F-06304 Nice 4, France
基金
欧洲研究理事会;
关键词
methods: data analysis; methods: observational; techniques: image processing; software: simulations; turbulence; atmospheric effects; ADAPTIVE OPTICS; RESOLUTION; QUALITY;
D O I
10.1093/mnras/stae1018
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We introduce a novel technique to mitigate the adverse effects of atmospheric turbulence on astronomical imaging. Utilizing a video-to-image neural network trained on simulated data, our method processes a sliding sequence of short-exposure (similar to 0.2 s) stellar field images to reconstruct an image devoid of both turbulence and noise. We demonstrate the method with simulated and observed stellar fields, and show that the brief exposure sequence allows the network to accurately associate speckles to their originating stars and effectively disentangle light from adjacent sources across a range of seeing conditions, all while preserving flux to a lower signal-to-noise ratio than an average stack. This approach results in a marked improvement in angular resolution without compromising the astrometric stability of the final image.
引用
收藏
页码:403 / 421
页数:19
相关论文
共 20 条
  • [1] Restoration of multitemporal short-exposure astronomical images
    Haindl, M
    Simberová, S
    IMAGE ANALYSIS, PROCEEDINGS, 2005, 3540 : 1037 - 1046
  • [2] Multichannel blind deconvolution of the short-exposure astronomical images
    Sroubek, F
    Flusser, J
    Suk, T
    Simberová, S
    15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS: IMAGE, SPEECH AND SIGNAL PROCESSING, 2000, : 49 - 52
  • [3] Measurements of atmospheric turbulence parameters at Vainu Bappu Observatory using short-exposure CCD images
    Sreekanth Reddy V.
    Ravinder Kumar Banyal
    Sridharan R.
    Aishwarya Selvaraj
    ResearchinAstronomyandAstrophysics, 2019, 19 (05) : 125 - 134
  • [4] Restoration of a short-exposure image sequence degraded by atmospheric turbulence
    Bondeau, C
    Bourennane, E
    Paindavoine, M
    PROPAGATION AND IMAGING THROUGH THE ATMOSPHERE IV, 2000, 4125 : 120 - 130
  • [5] Probabilistic model-based restoration of short-exposure astronomical images
    Haindl, M
    Simberová, S
    PROCEEDINGS OF THE SIXTH IASTED INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING, 2004, : 619 - 624
  • [6] Measurements of atmospheric turbulence parameters at Vainu Bappu Observatory using short-exposure CCD images
    Reddy, Sreekanth
    Banyal, Ravinder Kumar
    Sridharan, R.
    Selvaraj, Aishwarya
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2019, 19 (05)
  • [7] Direct observation of atmospheric turbulence with a video-rate wide-field wavefront sensor
    Guo, Yuduo
    Hao, Yuhan
    Wan, Sen
    Zhang, Hao
    Zhu, Laiyu
    Zhang, Yi
    Wu, Jiamin
    Dai, Qionghai
    Fang, Lu
    NATURE PHOTONICS, 2024, 18 (09) : 935 - 943
  • [8] Turbulence effect mitigation using adaptive optics post-processing of holographically recorded short-exposure images
    Vorontso, Mikhail A.
    Aubailly, Mathieu
    Dou, Rensheng
    ATMOSPHERIC OPTICS: MODELS, MEASUREMENTS, AND TARGET-IN-THE LOOP PROPAGATION, 2007, 6708
  • [9] Space Variant PSF - Deconvolution of Wide-Field Astronomical Images
    Rerabek, M.
    ACTA POLYTECHNICA, 2008, 48 (03) : 79 - 83
  • [10] Identification of Megaconstellations in Wide-field Astronomical Images with Machine Learning
    Liu, Liu
    Sun, Rongyu
    Zhao, He
    ASTRONOMICAL JOURNAL, 2025, 169 (04):