Learning robust autonomous navigation and locomotion for wheeled-legged robots

被引:1
|
作者
Lee, Joonho [1 ,2 ]
Bjelonic, Marko [1 ,3 ]
Reske, Alexander [1 ,3 ]
Wellhausen, Lorenz [1 ,3 ]
Miki, Takahiro [1 ]
Hutter, Marco [1 ]
机构
[1] Swiss Fed Inst Technol, Robot Syst Lab, Zurich, Switzerland
[2] Neuromeka, Seoul, South Korea
[3] Swiss Mile Robot AG, Zurich, Switzerland
基金
欧盟地平线“2020”; 瑞士国家科学基金会;
关键词
Adaptive control systems - Integrated control - Motion planning - Navigation - Navigation systems - Reinforcement learning - Robots - Robustness (control systems) - Urban planning;
D O I
10.1126/scirobotics.adi9641
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Autonomous wheeled-legged robots have the potential to transform logistics systems, improving operational efficiency and adaptability in urban environments. Navigating urban environments, however, poses unique challenges for robots, necessitating innovative solutions for locomotion and navigation. These challenges include the need for adaptive locomotion across varied terrains and the ability to navigate efficiently around complex dynamic obstacles. This work introduces a fully integrated system comprising adaptive locomotion control, mobility-aware local navigation planning, and large-scale path planning within the city. Using model-free reinforcement learning (RL) techniques and privileged learning, we developed a versatile locomotion controller. This controller achieves efficient and robust locomotion over various rough terrains, facilitated by smooth transitions between walking and driving modes. It is tightly integrated with a learned navigation controller through a hierarchical RL framework, enabling effective navigation through challenging terrain and various obstacles at high speed. Our controllers are integrated into a large-scale urban navigation system and validated by autonomous, kilometer-scale navigation missions conducted in Zurich, Switzerland, and Seville, Spain. These missions demonstrate the system's robustness and adaptability, underscoring the importance of integrated control systems in achieving seamless navigation in complex environments. Our findings support the feasibility of wheeled-legged robots and hierarchical RL for autonomous navigation, with implications for last-mile delivery and beyond.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A Survey of Wheeled-Legged Robots
    Bjelonic, Marko
    Klemm, Victor
    Lee, Joonho
    Hutter, Marco
    ROBOTICS IN NATURAL SETTINGS, CLAWAR 2022, 2023, 530 : 83 - 94
  • [2] Autonomous Navigation With Online Replanning and Recovery Behaviors for Wheeled-Legged Robots Using Behavior Trees
    De Luca, Alessio
    Muratore, Luca
    Tsagarakis, Nikos G.
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (10) : 6803 - 6810
  • [3] Dynamic Locomotion with a Wheeled-Legged Quadruped Robot
    Sharf, I.
    BRAIN, BODY AND MACHINE, 2010, 83 : 299 - 310
  • [4] Static Balancing of Wheeled-legged Hexapod Robots
    Orozco-Magdaleno, Ernesto Christian
    Cafolla, Daniele
    Castillo-Castaneda, Eduardo
    Carbone, Giuseppe
    ROBOTICS, 2020, 9 (02)
  • [5] Rolling in the Deep - Hybrid Locomotion for Wheeled-Legged Robots Using Online Trajectory Optimization
    Bjelonic, Marko
    Sankar, Prajish K.
    Bellicoso, C. Dario
    Vallery, Heike
    Hutter, Marco
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (02) : 3626 - 3633
  • [6] Towards More Possibilities: Motion Planning and Control for Hybrid Locomotion of Wheeled-Legged Robots
    Sun, Jingyuan
    You, Yangwei
    Zhao, Xuran
    Adiwahono, Albertus Hendrawan
    Chew, Chee Meng
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (02): : 3723 - 3730
  • [7] Dynamic Hybrid Locomotion and Jumping for Wheeled-Legged Quadrupeds
    Hosseini, Mojtaba
    Rodriguez, Diego
    Behnke, Sven
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, IROS, 2023, : 793 - 799
  • [8] Max: A Wheeled-Legged Quadruped Robot for Multimodal Agile Locomotion
    Zhou, Qinqin
    Yang, Sicheng
    Jiang, Xinyang
    Zhang, Dongsheng
    Chi, Wanchao
    Chen, Ke
    Zhang, Shenghao
    Li, Jie
    Zhang, Jingfan
    Wang, Rui
    Li, Jingchen
    Zhang, Yufeng
    Wang, Haitao
    Wang, Shuai
    Xiang, Lingzhu
    Zheng, Yu
    Zhang, Zhengyou
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2023, 21 (04) : 1 - 21
  • [9] Optimization-Based Quadrupedal Hybrid Wheeled-Legged Locomotion
    Belli, I
    Polverini, M. Parigi
    Laurenzi, A.
    Hoffman, E. Mingo
    Rocco, P.
    Tsagarakis, N. G.
    PROCEEDINGS OF THE 2020 IEEE-RAS 20TH INTERNATIONAL CONFERENCE ON HUMANOID ROBOTS (HUMANOIDS 2020), 2021, : 41 - 46
  • [10] Hybrid Driving-Stepping Locomotion with the Wheeled-legged Robot Momaro
    Schwarz, Max
    Rodehutskors, Tobias
    Schreiber, Michael
    Behnke, Sven
    2016 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2016, : 5589 - 5595