A systematic evaluation of Euclidean alignment with deep learning for EEG decoding

被引:0
|
作者
Junqueira, Bruna [1 ,2 ]
Aristimunha, Bruno [2 ,3 ]
Chevallier, Sylvain [2 ]
de Camargo, Raphael Y. [3 ]
机构
[1] Univ Sao Paulo, Sao Paulo, Brazil
[2] Univ Paris Saclay, Inria TAU Team, LISN CNRS, Orsay, France
[3] Fed Univ ABC, Santo Andre, Brazil
基金
巴西圣保罗研究基金会;
关键词
Brain-Computer interfaces; neural network; Euclidean alignment; BRAIN-COMPUTER INTERFACES; NEURAL-NETWORKS; CLASSIFICATION;
D O I
10.1088/1741-2552/ad4f18
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective: Electroencephalography signals are frequently used for various Brain-Computer interface (BCI) tasks. While deep learning (DL) techniques have shown promising results, they are hindered by the substantial data requirements. By leveraging data from multiple subjects, transfer learning enables more effective training of DL models. A technique that is gaining popularity is Euclidean alignment (EA) due to its ease of use, low computational complexity, and compatibility with DL models. However, few studies evaluate its impact on the training performance of shared and individual DL models. In this work, we systematically evaluate the effect of EA combined with DL for decoding BCI signals. Approach: We used EA as a pre-processing step to train shared DL models with data from multiple subjects and evaluated their transferability to new subjects. Main results: Our experimental results show that it improves decoding in the target subject by 4.33% and decreases convergence time by more than 70%. We also trained individual models for each subject to use as a majority-voting ensemble classifier. In this scenario, using EA improved the 3-model ensemble accuracy by 3.71%. However, when compared to the shared model with EA, the ensemble accuracy was 3.62% lower. Significance: EA succeeds in the task of improving transfer learning performance with DL models and, could be used as a standard pre-processing technique.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Deep learning in motor imagery EEG signal decoding: A Systematic Review
    Saibene, Aurora
    Ghaemi, Hafez
    Dagdevir, Eda
    NEUROCOMPUTING, 2024, 610
  • [2] Empirical comparison of deep learning methods for EEG decoding
    de Oliveira, Iago Henrique
    Rodrigues, Abner Cardoso
    FRONTIERS IN NEUROSCIENCE, 2023, 16
  • [3] Evaluation of Hyperparameter Optimization in Machine and Deep Learning Methods for Decoding Imagined Speech EEG
    Cooney, Ciaran
    Korik, Attila
    Folli, Raffaella
    Coyle, Damien
    SENSORS, 2020, 20 (16) : 1 - 22
  • [4] Decoding Intracranial EEG With Machine Learning: A Systematic Review
    Mirchi, Nykan
    Warsi, Nebras M.
    Zhang, Frederick
    Wong, Simeon M.
    Suresh, Hrishikesh
    Mithani, Karim
    Erdman, Lauren
    Ibrahim, George M.
    FRONTIERS IN HUMAN NEUROSCIENCE, 2022, 16
  • [5] Deep Learning Algorithms in EEG Signal Decoding Application: A Review
    Vallabhaneni, Ramesh Babu
    Sharma, Pankaj
    Kumar, Vinit
    Kulshreshtha, Vyom
    Reddy, Koya Jeevan
    Kumar, S. Selva
    Kumar, V. Sandeep
    Bitra, Surendra Kumar
    IEEE ACCESS, 2021, 9 (09): : 125778 - 125786
  • [6] Deep Learning With Convolutional Neural Networks for EEG Decoding and Visualization
    Schirrmeister, Robin Tibor
    Springenberg, Jost Tobias
    Fiederer, Lukas Dominique Josef
    Glasstetter, Martin
    Eggensperger, Katharina
    Tangermann, Michael
    Hutter, Frank
    Burgard, Wolfram
    Ball, Tonio
    HUMAN BRAIN MAPPING, 2017, 38 (11) : 5391 - 5420
  • [7] Neural Decoding of EEG Signals with Machine Learning: A Systematic Review
    Saeidi, Maham
    Karwowski, Waldemar
    Farahani, Farzad V.
    Fiok, Krzysztof
    Taiar, Redha
    Hancock, P. A.
    Al-Juaid, Awad
    BRAIN SCIENCES, 2021, 11 (11)
  • [8] Decoding EEG and LFP Signals using Deep Learning: Heading TrueNorth
    Nurse, Ewan
    Mashford, Benjamin S.
    Yepes, Antonio Jimeno
    Kiral-Kornek, Isabell
    Harrer, Stefan
    Freestone, Dean R.
    PROCEEDINGS OF THE ACM INTERNATIONAL CONFERENCE ON COMPUTING FRONTIERS (CF'16), 2016, : 259 - 266
  • [9] Hierarchical Deep Feature Learning for Decoding Imagined Speech from EEG
    Saha, Pramit
    Fels, Sidney
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 10019 - 10020
  • [10] DEEP LEARNING WITH CONVOLUTIONAL NEURAL NETWORKS FOR DECODING AND VISUALIZATION OF EEG PATHOLOGY
    Schirrmeister, R.
    Gemein, L.
    Eggensperger, K.
    Hutter, F.
    Ball, T.
    2017 IEEE SIGNAL PROCESSING IN MEDICINE AND BIOLOGY SYMPOSIUM (SPMB), 2017,