Quantum Voting Machine Encoded with Microwave Photons

被引:1
|
作者
Zhang, Yu [1 ,2 ,3 ]
Yang, Chuiping [4 ]
Su, Qiping [4 ]
Kang, Yihao [4 ]
Zheng, Wen [1 ,2 ,3 ]
Li, Shaoxiong [1 ,2 ,3 ]
Yu, Yang [1 ,2 ,3 ,5 ]
机构
[1] Nanjing Univ, Sch Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[2] Nanjing Univ, Shishan Lab, Suzhou 215163, Peoples R China
[3] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Peoples R China
[4] Hangzhou Normal Univ, Dept Phys, Hangzhou 310036, Peoples R China
[5] Hefei Natl Lab, Hefei 230088, Peoples R China
基金
中国国家自然科学基金;
关键词
SUPERCONDUCTING CIRCUITS; COHERENCE; PROTOCOL; SCHEME; INFORMATION; QUBITS;
D O I
10.1088/0256-307X/41/7/070302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a simple quantum voting machine using microwave photon qubit encoding, based on a setup comprising multiple microwave cavities and a coupled superconducting flux qutrit. This approach primarily relies on a multi-control single-target quantum phase gate. The scheme offers operational simplicity, requiring only a single step, while ensuring verifiability through the measurement of a single qubit phase information to obtain the voting results. It provides voter anonymity, as the voting outcome is solely tied to the total number of affirmative votes. Our quantum voting machine also has scalability in terms of the number of voters. Additionally, the physical realization of the quantum voting machine is general and not limited to circuit quantum electrodynamics. Quantum voting machine can be implemented as long as the multi-control single-phase quantum phase gate is realized in other physical systems. Numerical simulations indicate the feasibility of this quantum voting machine within the current quantum technology.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Quantum Voting Machine Encoded with Microwave Photons
    张钰
    杨垂平
    苏奇平
    康逸豪
    郑文
    李邵雄
    于扬
    Chinese Physics Letters, 2024, 41 (07) : 17 - 22
  • [2] Quantum Communication with Time-Bin Encoded Microwave Photons
    Kurpiers, P.
    Pechal, M.
    Royer, B.
    Magnard, P.
    Walter, T.
    Heinsoo, J.
    Salathe, Y.
    Akin, A.
    Storz, S.
    Besse, J-C
    Gasparinetti, S.
    Blais, A.
    Wallraff, A.
    PHYSICAL REVIEW APPLIED, 2019, 12 (04)
  • [3] Quantum Radar with Vortex Microwave Photons
    Zhang, Chao
    Wang, Yuanhe
    Jiang, Xuefeng
    Journal of Radars, 2021, 10 (05) : 749 - 759
  • [4] Quantum Secret Sharing with Phase-Encoded Photons
    Grice, W. P.
    Evans, P. G.
    Lawrie, B.
    Legre, M.
    Lougovski, P.
    Qi, B.
    Ray, W.
    Smith, M.
    Williams, B.
    2014 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2014,
  • [5] Quantum switch for itinerant microwave single photons with superconducting quantum circuits
    Li, Yan
    Bao, Zenghui
    Wang, Zhiling
    Wu, Yukai
    Wang, Jiahui
    Yang, Jize
    Xiong, Haonan
    Song, Yipu
    Zhang, Hongyi
    Duan, Luming
    PHYSICAL REVIEW APPLIED, 2024, 21 (04):
  • [6] Universal quantum gates on microwave photons assisted by circuit quantum electrodynamics
    Hua, Ming
    Tao, Ming-Jie
    Deng, Fu-Guo
    PHYSICAL REVIEW A, 2014, 90 (01):
  • [7] Quantum networking of microwave photons using optical fibers
    Clader, B. D.
    PHYSICAL REVIEW A, 2014, 90 (01):
  • [8] Juggling with Microwave Photons in a Box To Explore the Quantum World
    Haroche, Serge
    2014 39TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), 2014,
  • [9] Proposal for a coherent quantum memory for propagating microwave photons
    Afzelius, M.
    Sangouard, N.
    Johansson, G.
    Staudt, M. U.
    Wilson, C. M.
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [10] Deterministic secure quantum communication with double-encoded single photons
    Wei Yu-Yan
    Gao Zi-Kai
    Wang Si-Ying
    Zhu Ya-Jing
    Li Tao
    ACTA PHYSICA SINICA, 2022, 71 (05)