MACHINE LEARNING-BASED PERFORMANCE PREDICTION MODEL OPTIMIZATION FOR SOI LDMOS USING ADAPTIVE SMALL SPACE DATASET

被引:0
|
作者
You, Jinwen [1 ,2 ]
Chen, Jing [1 ,2 ]
Yao, Qing [1 ,2 ]
Dai, Yuxuan [1 ,2 ]
Guo, Yufeng [1 ,2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Integrated Circuit Sci & Engn, Nanjing 210023, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Natl & Local Joint Engn Lab RF Integrat & Micropa, Nanjing 210023, Peoples R China
关键词
D O I
10.1109/CSTIC61820.2024.10532088
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This work proposes an adaptive small space dataset generation approach to improve the ML-based model. By leveraging radial basis function(RBF)kernel to calculate similarity to the target structure, small space training data sets with high similarity are filtered for model training. The numerical results show that the small space model can not only improve the performance prediction accuracy, but also accelerate the model testing process. Meanwhile, the memory requirements during the training process are significantly reduced. In addition, the accuracies of small space models using different algorithms also demonstrate the robustness of the proposed method.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Machine learning-based risk prediction model for cardiovascular disease using a hybrid dataset
    Kanagarathinam, Karthick
    Sankaran, Durairaj
    Manikandan, R.
    [J]. DATA & KNOWLEDGE ENGINEERING, 2022, 140
  • [2] The METLIN small molecule dataset for machine learning-based retention time prediction
    Xavier Domingo-Almenara
    Carlos Guijas
    Elizabeth Billings
    J. Rafael Montenegro-Burke
    Winnie Uritboonthai
    Aries E. Aisporna
    Emily Chen
    H. Paul Benton
    Gary Siuzdak
    [J]. Nature Communications, 10
  • [3] The METLIN small molecule dataset for machine learning-based retention time prediction
    Domingo-Almenara, Xavier
    Guijas, Carlos
    Billings, Elizabeth
    Montenegro-Burke, J. Rafael
    Uritboonthai, Winnie
    Aisporna, Aries E.
    Chen, Emily
    Benton, H. Paul
    Siuzdak, Gary
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [4] Deep Learning-based Mammogram Classification using Small Dataset
    Adedigba, Adeyinka P.
    Adeshina, Steve A.
    Aibinu, Abiodun M.
    [J]. 2019 15TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTER AND COMPUTATION (ICECCO), 2019,
  • [5] Machine learning-based model for prediction of concrete strength
    Aswal, Vivek Singh
    Singh, B.K.
    Maheshwari, Rohit
    [J]. Multiscale and Multidisciplinary Modeling, Experiments and Design, 2025, 8 (01)
  • [6] Spatial Prediction of Apartment Rent using Regression-Based and Machine Learning-Based Approaches with a Large Dataset
    Yoshida, Takahiro
    Murakami, Daisuke
    Seya, Hajime
    [J]. JOURNAL OF REAL ESTATE FINANCE AND ECONOMICS, 2024, 69 (01): : 1 - 28
  • [7] CloudProphet: A Machine Learning-Based Performance Prediction for Public Clouds
    Huang, Darong
    Costero, Luis
    Pahlevan, Ali
    Zapater, Marina
    Atienza, David
    [J]. IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, 2024, 9 (04): : 661 - 676
  • [8] ADAPTIVE SCHEDULING THROUGH MACHINE LEARNING-BASED PROCESS PARAMETER PREDICTION
    Frye, M.
    Gyulai, D.
    Bergmann, J.
    Schmitt, R. H.
    [J]. MM SCIENCE JOURNAL, 2019, 2019 : 3060 - 3066
  • [9] Machine learning-based adaptive degradation model for RC beams
    Wu, Zi-Nan
    Han, Xiao-Lei
    He, An
    Cai, Yan-Fei
    Ji, Jing
    [J]. ENGINEERING STRUCTURES, 2022, 253
  • [10] Machine learning-based longitudinal phase space prediction of particle accelerators
    Emma, C.
    Edelen, A.
    Hogan, M. J.
    O'Shea, B.
    White, G.
    Yakimenko, V
    [J]. PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2018, 21 (11)