Autoencoder-Based Restoration of Multi-Channel Sensor Signal Loss

被引:0
|
作者
Lee, Jaejun [1 ]
Seo, Hogeon [1 ,2 ]
Yu, Yonggyun [1 ,2 ]
机构
[1] Korea Atom Energy Res Inst, Daejeon, South Korea
[2] Korea Natl Univ Sci & Technol, Daejeon, South Korea
关键词
Restoration; Multi-channel Signal; Autoencoder; Deep Learning; Signal Loss; NETWORKS;
D O I
10.7779/JKSNT.2024.44.3.213
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We propose a method for restoring lost values in multi -channel sensor signals when specific channels or values are missing by using an autoencoder model. For this purpose, an autoencoder model was trained using normal data and then used to predict the values of the missing channels. Evaluation results showed that the restoration approximated the original values and patterns by utilizing information from the non -missing channels. Additionally, the restoration performance varied, depending on the correlations among different channels. The proposed method can enhance the overall validity of a dataset and contribute to the improvement of the data restoration capability in situations of sensor failures or data loss.
引用
收藏
页码:213 / 218
页数:6
相关论文
共 50 条
  • [1] A multi-channel fusion variational autoencoder-based RUL prediction approach for multi-sensor systems
    Wang, Yuxiao
    Suo, Chao
    Zhao, Yuyu
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (11)
  • [2] Autoencoder-based holographic image restoration
    Shimobaba, Tomoyoshi
    Endo, Yutaka
    Hirayama, Ryuji
    Nagahama, Yuki
    Takahashi, Takayuki
    Nishitsuji, Takashi
    Kakue, Takashi
    Shiraki, Atsushi
    Takada, Naoki
    Masuda, Nobuyuki
    Ito, Tomoyoshi
    APPLIED OPTICS, 2017, 56 (13) : F27 - F30
  • [3] Connectivity Restoration in Multi-Channel Wireless Sensor Networks
    Chouikhi, Samira
    El Korbi, Ines
    Ghamri-Doudane, Yacine
    Saidane, Leila Azouz
    2015 INTERNATIONAL CONFERENCE ON PROTOCOL ENGINEERING (ICPE) AND INTERNATIONAL CONFERENCE ON NEW TECHNOLOGIES OF DISTRIBUTED SYSTEMS (NTDS), 2015,
  • [4] Convolutional Autoencoder-based Sensor Fault Classification
    Yang, Jae-Wan
    Lee, Young-Doo
    Koo, In-Soo
    2018 TENTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS (ICUFN 2018), 2018, : 865 - 867
  • [5] Multi-channel curvature sensor based on fiber bending loss wavelength and SPR
    Wei, Yong
    Liu, Chunbiao
    Liu, Chunlan
    Shi, Chen
    Wang, Rui
    Wang, Xingkai
    Ren, Zhuo
    Ran, Ze
    Liu, Zhihai
    Zhang, Yu
    OPTICS LETTERS, 2022, 47 (22) : 6017 - 6020
  • [6] Multi-channel Signal Generator Based on FPGA
    Zheng, Yan
    ELECTRONIC INFORMATION AND ELECTRICAL ENGINEERING, 2012, 19 : 508 - 510
  • [7] Digital Signal Processing for a Multi-Channel Chemical Sensor Interface
    Trifkovic, Mario
    Raic, Dusan
    Strle, Drago
    INFORMACIJE MIDEM-JOURNAL OF MICROELECTRONICS ELECTRONIC COMPONENTS AND MATERIALS, 2015, 45 (03): : 195 - 203
  • [8] Autoencoder-based image compression for wireless sensor networks
    Lungisani, Bose Alex
    Zungeru, Adamu Murtala
    Lebekwe, Caspar
    Yahya, Abid
    SCIENTIFIC AFRICAN, 2024, 24
  • [9] Multi-channel signal sampling
    Zavatsky, IO
    Migalik, YY
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 1996, 39 (3-4): : A44 - A49
  • [10] Multi-channel signal separation
    Chan, DCB
    Rayner, PJW
    Godsill, SJ
    1996 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, CONFERENCE PROCEEDINGS, VOLS 1-6, 1996, : 649 - 652