Adversarial Attacks on Scene Graph Generation

被引:1
|
作者
Zhao, Mengnan [1 ]
Zhang, Lihe [2 ]
Wang, Wei [3 ]
Kong, Yuqiu [1 ]
Yin, Baocai [1 ]
机构
[1] Dalian Univ Technol, Sch Comp Sci & Technol, Dalian 116000, Peoples R China
[2] Dalian Univ Technol, Sch Informat & Commun Engn, Dalian 116024, Peoples R China
[3] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100080, Peoples R China
关键词
Task analysis; Object detection; Windows; Visualization; Mirrors; Predictive models; Perturbation methods; Scene graph generation; adversarial attack; bounding box relabeling; two-step weighted attack; NETWORK;
D O I
10.1109/TIFS.2024.3360880
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Scene graph generation (SGG) effectively improves semantic understanding of the visual world. However, the recent interest of researchers focuses on enhancing SGG in non-adversarial settings, which raises our curiosity about the adversarial robustness of SGG models. To bridge this gap, we perform adversarial attacks on two typical SGG tasks, Scene Graph Detection (SGDet) and Scene Graph Classification (SGCls). Specifically, we initially propose a bounding box relabeling method to reconstruct reasonable attack targets for SGCls. It solves the inconsistency between the specified bounding boxes and the scene graphs selected as attack targets. Subsequently, we introduce a two-step weighted attack by removing the predicted objects and relational triples that affect attack performance, which significantly increases the success rate of adversarial attacks on two SGG tasks. Extensive experiments demonstrate the effectiveness of our methods on five popular SGG models and four adversarial attacks.
引用
收藏
页码:3210 / 3225
页数:16
相关论文
共 50 条
  • [1] Adversarial Attacks on Deep Graph Matching
    Zhang, Zijie
    Zhang, Zeru
    Zhou, Yang
    Shen, Yelong
    Jin, Ruoming
    Dou, Dejing
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS (NEURIPS 2020), 2020, 33
  • [2] Point Cloud Adversarial Perturbation Generation for Adversarial Attacks
    He, Fengmei
    Chen, Yihuai
    Chen, Ruidong
    Nie, Weizhi
    IEEE ACCESS, 2023, 11 : 2767 - 2774
  • [3] Graph Adversarial Attacks and Defense: An Empirical Study on Citation Graph
    Chau Pham
    Vung Pham
    Dang, Tommy
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 2553 - 2562
  • [4] Revisiting Adversarial Attacks on Graph Neural Networks for Graph Classification
    Wang, Xin
    Chang, Heng
    Xie, Beini
    Bian, Tian
    Zhou, Shiji
    Wang, Daixin
    Zhang, Zhiqiang
    Zhu, Wenwu
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (05) : 2166 - 2178
  • [5] Imperceptible adversarial attacks against traffic scene recognition
    Zhu, Yinghui
    Jiang, Yuzhen
    SOFT COMPUTING, 2021, 25 (20) : 13069 - 13077
  • [6] Transferable Adversarial Attacks for Deep Scene Text Detection
    Wu, Shudeng
    Dai, Tao
    Meng, Guanghao
    Chen, Bin
    Lu, Jian
    Xia, Shu-Tao
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 8945 - 8951
  • [7] Adversarial Attacks on Neural Networks for Graph Data
    Zuegner, Daniel
    Akbarnejad, Amir
    Guennemann, Stephan
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 6246 - 6250
  • [8] Exploratory Adversarial Attacks on Graph Neural Networks
    Lin, Xixun
    Zhou, Chuan
    Yang, Hong
    Wu, Jia
    Wang, Haibo
    Cao, Yanan
    Wang, Bin
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2020), 2020, : 1136 - 1141
  • [9] Adversarial Attacks on Neural Networks for Graph Data
    Zuegner, Daniel
    Akbarnejad, Amir
    Guennemann, Stephan
    KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, : 2847 - 2856
  • [10] Unconditional Scene Graph Generation
    Garg, Sarthak
    Dhamo, Helisa
    Farshad, Azade
    Musatian, Sabrina
    Navab, Nassir
    Tombari, Federico
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 16342 - 16351