Separable Deep Graph Convolutional Network Integrated With CNN and Prototype Learning for Hyperspectral Image Classification

被引:2
|
作者
Lu, Yingjie [1 ]
Mei, Shaohui [1 ]
Xu, Fulin [1 ]
Ma, Mingyang [2 ]
Wang, Xiaofei [1 ]
机构
[1] Northwestern Polytech Univ, Sch Elect & Informat, Xian 710072, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Informat & Commun Engn, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Convolutional neural networks; Prototypes; Hyperspectral imaging; Convolution; Data mining; Kernel; Attention mechanism; convolutional neural network (CNN); graph convolutional network (GCN); hyperspectral image (HSI) classification; prototype learning; NEURAL-NETWORKS;
D O I
10.1109/TGRS.2024.3390575
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Graph convolutional networks (GCNs) have garnered extensive attention in the realm of hyperspectral image (HSI) classification. However, due to the problem of oversmoothing caused by deep GCN, most of the existing GCN-based methods are limited to constructing shallow networks, thus only able to extract superficial features. Moreover, when existing shallow GCNs extend to a more deeper structure, the number of learnable parameters increases linearly, thus leading to poor generalization performance under limited training samples. To address the aforementioned issues, a separable deep GCN integrated with convolutional neural network and prototype learning (SDGCP) is proposed for HSI classification, which can extract effective global structural information of HSI without increasing the number of trainable parameters. Specifically, the spectral and spatial features, adaptively selected by the attention module, are encoded into the structure of a graph by the graph encoder with the assistance of the pixel-to-region mapping obtained from the simple linear iterative clustering (SLIC). Then, a separable deep graph convolution module, composed of feature extraction and deep feature propagation, is adopted to capture the long-range contextual relationships from HSI encoded as graph data, which is combined with locally complementary information extracted by CNN after decoding. Finally, to further boost the performance of classification under limited labeled samples, prototype learning with regularization terms is utilized to enhance the intraclass compactness and interclass separability of feature representations. Extensive experiments on three standard HSI datasets demonstrate the superiority of the proposed SDGCP over the state-of-the-art (SOTA) methods.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A Fast Dynamic Graph Convolutional Network and CNN Parallel Network for Hyperspectral Image Classification
    Liu, Quanwei
    Dong, Yanni
    Zhang, Yuxiang
    Luo, Hui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [2] Deep Residual Prototype Learning Network for Hyperspectral Image Classification
    Liu, Yu
    Su, Mingrui
    Liu, Lu
    Li, Chunchao
    Peng, Yuanxi
    Hou, Jing
    Jiang, Tian
    SECOND TARGET RECOGNITION AND ARTIFICIAL INTELLIGENCE SUMMIT FORUM, 2020, 11427
  • [3] Hyperspectral Image Classification Based on Deep Attention Graph Convolutional Network
    Bai, Jing
    Ding, Bixiu
    Xiao, Zhu
    Jiao, Licheng
    Chen, Hongyang
    Regan, Amelia C.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [4] Graph-in-Graph Convolutional Network for Hyperspectral Image Classification
    Jia S.
    Jiang S.
    Zhang S.
    Xu M.
    Jia X.
    IEEE Transactions on Neural Networks and Learning Systems, 2024, 35 (01) : 1157 - 1171
  • [5] Hyperspectral Image Classification With Contrastive Graph Convolutional Network
    Yu, Wentao
    Wan, Sheng
    Li, Guangyu
    Yang, Jian
    Gong, Chen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [6] Semisupervised graph convolutional network for hyperspectral image classification
    Liu, Bing
    Gao, Kuiliang
    Yu, Anzhu
    Guo, Wenyue
    Wang, Ruirui
    Zuo, Xibing
    JOURNAL OF APPLIED REMOTE SENSING, 2020, 14 (02):
  • [7] Fuzzy graph convolutional network for hyperspectral image classification
    Xu, Jindong
    Li, Kang
    Li, Ziyi
    Chong, Qianpeng
    Xing, Haihua
    Xing, Qianguo
    Ni, Mengying
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
  • [8] Feature Fusion via Deep Residual Graph Convolutional Network for Hyperspectral Image Classification
    Chen, Rong
    Guanghui, Li
    Dai, Chenglong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [9] Feature Fusion via Deep Residual Graph Convolutional Network for Hyperspectral Image Classification
    Chen, Rong
    Guanghui, Li
    Dai, Chenglong
    IEEE Geoscience and Remote Sensing Letters, 2022, 19
  • [10] Integrating Prototype Learning With Graph Convolution Network for Effective Active Hyperspectral Image Classification
    Ding, Chen
    Zheng, Mengmeng
    Zheng, Sirui
    Xu, Yaoyang
    Zhang, Lei
    Wei, Wei
    Zhang, Yanning
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 16