Interactive, Privacy-Aware Semantic Mapping for Homes

被引:0
|
作者
Martinson, E. [1 ,2 ]
Alladkani, F. [1 ]
机构
[1] iRobot, Boston, MA 01730 USA
[2] Lawrence Tech Univ, Dept Math & Comp Sci, Southfield, MI 48075 USA
关键词
D O I
10.1109/UR61395.2024.10597526
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Semantic mapping is computationally expensive, requiring either large GPUs on the robot, or significant numbers of uploaded images to the cloud. Neither solution is appropriate for home robots, where the hardware must be inexpensive, and privacy is a real concern. Instead of resorting fully to hand-labeled maps to address privacy concerns, where label noise can be a big problem depending on the quality of the input interface, we propose an interactive solution integrating hand drawn boxes with robot exploration data. Specifically, nonlinear optimization is conducted on each user-submitted proposal based on the bounding boxes and detection information collected by the robot, generating higher quality estimates quickly for human review as part of an interaction. In this manner, images are processed once on the robot with cost effective algorithms, and then discarded, minimizing the risk of exposing sensitive information. This privacy-aware approach improves map and object quality compared to using hand-labeled maps directly, even when working with user proposals that have up to 50% label noise.
引用
收藏
页码:588 / 595
页数:8
相关论文
共 50 条
  • [1] Privacy-Aware Web Services in Smart Homes
    Maamar, Zakaria
    Mahmoud, Qusay
    Sahli, Nabil
    Boukadi, Khouloud
    [J]. AMBIENT ASSISTIVE HEALTH AND WELLNESS MANAGEMENT IN THE HEART OF THE CITY, PROCEEDING, 2009, 5597 : 174 - +
  • [2] A Privacy-Aware Semantic Model for Provenance Management
    Can, Ozgu
    Yilmazer, Dilek
    [J]. METADATA AND SEMANTICS RESEARCH, MTSR 2014, 2014, 478 : 162 - 169
  • [3] A Semantic Framework for Privacy-Aware Access Control
    Lioudakis, Georgios V.
    Dellas, Nikolaos L.
    Koutsoloukas, Eleftherios A.
    Kapitsaki, Georgia M.
    Kaklamani, Dimitra I.
    Venieris, Iakovos S.
    [J]. 2008 INTERNATIONAL MULTICONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY (IMCSIT), VOLS 1 AND 2, 2008, : 757 - 764
  • [4] Privacy-Aware Peak Load Reduction in Smart Homes
    Sarbhai, Aarushi
    Van der Merwe, Jacobus
    Kasera, Sneha
    [J]. 2019 11TH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS & NETWORKS (COMSNETS), 2019, : 347 - 354
  • [5] Privacy-Aware Anomaly Detection Using Semantic Segmentation
    Bidstrup, Michael
    Dueholm, Jacob, V
    Nasrollahi, Kamal
    Moeslund, Thomas B.
    [J]. ADVANCES IN VISUAL COMPUTING (ISVC 2021), PT II, 2021, 13018 : 110 - 123
  • [6] Privacy-Aware Wrappers
    Jafer, Yasser
    Matwin, Stan
    Sokolova, Marina
    [J]. ADVANCES IN ARTIFICIAL INTELLIGENCE (AI 2015), 2015, 9091 : 130 - 138
  • [7] Privacy-Aware Folksonomies
    Heidinger, Clemens
    Buchmann, Erik
    Huber, Matthias
    Boehm, Klemens
    Mueller-Quade, Joern
    [J]. RESEARCH AND ADVANCED TECHNOLOGY FOR DIGITAL LIBRARIES, 2010, 6273 : 156 - 167
  • [8] PARROT: Interactive Privacy-Aware Internet of Things Application Design Tool
    Alhirabi, Nada
    Beaumont, Stephanie
    Llanos, Jose Tomas
    Meedeniya, Dulani
    Rana, Omer
    Perera, Charith
    [J]. PROCEEDINGS OF THE ACM ON INTERACTIVE MOBILE WEARABLE AND UBIQUITOUS TECHNOLOGIES-IMWUT, 2023, 7 (01):
  • [9] Privacy-Aware Kalman Filtering
    Song, Yang
    Wang, Chong Xiao
    Tay, Wee Peng
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 4434 - 4438
  • [10] Towards Privacy-Aware Keyboards
    Buza, Krisztian
    Kis, Piroska B.
    [J]. PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON COMPUTER RECOGNITION SYSTEMS CORES 2017, 2018, 578 : 140 - 147