Accelerating machine learning at the edge with approximate on FPGAs

被引:0
|
作者
Leon-Vega, Luis Gerardo [1 ]
Salazar-Villalobos, Eduardo [2 ]
Castro-Godinez, Jorge [3 ]
机构
[1] Inst Tecnol Costa Rica, Cartago, Costa Rica
[2] Univ Trieste, Trieste, Italy
[3] Inst Tecnol Costa Rica, Sch Elect Engn, Cartago, Costa Rica
来源
TECNOLOGIA EN MARCHA | 2022年 / 35卷
关键词
Approximate computing; edge computing; machine learning; neural networks; linear algebra;
D O I
10.18845/tm.v35i9.6491
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Performing inference of complex machine learning (ML) algorithms at the edge is becoming important to unlink the system functionality from the cloud. However, the ML models increase complexity faster than the available hardware resources. This research aims to accelerate machine learning by offloading the computation to low -end FPGAs and using approximate computing techniques to optimise resource usage, taking advantage of the inaccurate nature of machine learning models. In this paper, we propose a generic matrix multiply -add processing element design, parameterised in datatype, matrix size, and data width. We evaluate the resource consumption and error behaviour while varying the matrix size and the data width given a fixed-point data type. We determine that the error scales with the matrix size, but it can be compensated by increasing the data width, posing a trade-off between data width and matrix size with respect to the error.
引用
收藏
页数:54
相关论文
共 50 条
  • [1] Accelerating Machine-Learning Kernels in Hadoop Using FPGAs
    Neshatpour, Katayoun
    Malik, Maria
    Homayoun, Houman
    [J]. 2015 15TH IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND GRID COMPUTING, 2015, : 1151 - 1154
  • [2] Accelerating Quantum Approximate Optimization Algorithm using Machine Learning
    Alam, Mahabubul
    Ash-Saki, Abdullah
    Ghosh, Swaroop
    [J]. PROCEEDINGS OF THE 2020 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2020), 2020, : 686 - 689
  • [3] Accelerating Machine-Learning Algorithms on FPGAs using Pattern-Based Decomposition
    Karthik Nagarajan
    Brian Holland
    Alan D. George
    K. Clint Slatton
    Herman Lam
    [J]. Journal of Signal Processing Systems, 2011, 62 : 43 - 63
  • [4] Accelerating Machine-Learning Algorithms on FPGAs using Pattern-Based Decomposition
    Nagarajan, Karthik
    Holland, Brian
    George, Alan D.
    Slatton, K. Clint
    Lam, Herman
    [J]. JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2011, 62 (01): : 43 - 63
  • [5] Accelerating Federated Edge Learning
    Nguyen, Tuan Dung
    Balef, Amir R.
    Dinh, Canh T.
    Tran, Nguyen H.
    Ngo, Duy T.
    Anh Le, Tuan
    Vo, Phuong L.
    [J]. IEEE COMMUNICATIONS LETTERS, 2021, 25 (10) : 3282 - 3286
  • [6] Accelerating Mobile Applications at the Network Edge with Software-Programmable FPGAs
    Jiang, Shuang
    He, Dong
    Yang, Chenxi
    Xu, Chenren
    Luo, Guojie
    Chen, Yang
    Liu, Yunlu
    Jiang, Jiangwei
    [J]. IEEE CONFERENCE ON COMPUTER COMMUNICATIONS (IEEE INFOCOM 2018), 2018, : 55 - 62
  • [7] Towards Accelerating Intrusion Detection Operations at the Edge Network using FPGAs
    Rebahi, Yacine
    Catal, Faruk
    Tcholtchev, Nikolay
    Maedje, Laurenz
    Alkhateeb, Omar
    Elangovan, Vinoth Kumar
    Apostolakis, Dimitris
    [J]. 2020 FIFTH INTERNATIONAL CONFERENCE ON FOG AND MOBILE EDGE COMPUTING (FMEC), 2020, : 104 - 111
  • [8] Accelerating Deep Neuroevolution on Distributed FPGAs for Reinforcement Learning Problems
    Asseman, Alexis
    Antoine, Nicolas
    Ozcan, Ahmet S.
    [J]. ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS, 2021, 17 (02)
  • [9] Design Exploration of Multi-FPGAs for Accelerating Deep Learning
    Wang, Teng
    Gong, Lei
    Wang, Chao
    Zhou, Xuehai
    Chen, Huaping
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING (CLUSTER), 2019, : 464 - 465
  • [10] Accelerating Continual Learning on Edge FPGA
    Piyasena, Duvindu
    Lam, Siew-Kei
    Wu, Meiqing
    [J]. 2021 31ST INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE LOGIC AND APPLICATIONS (FPL 2021), 2021, : 294 - 300