Mechanoactivation of Single Stem Cells in Microgels Using a 3D-Printed Stimulation Device

被引:1
|
作者
Iyisan, Nergishan [1 ,2 ,3 ]
Hausdoerfer, Oliver [1 ]
Wang, Chen [1 ,2 ,3 ]
Hiendlmeier, Lukas [3 ,4 ]
Harder, Philipp [1 ,2 ,3 ]
Wolfrum, Bernhard [3 ,4 ]
Oezkale, Berna [1 ,2 ,3 ]
机构
[1] Tech Univ Munich TUM, Sch Computat Informat & Technol, Dept Elect Engn, Microrobot Bioengn Lab MRBL, Hans Piloty Str 1, D-85748 Garching, Germany
[2] Tech Univ Munich, Munich Inst Robot & Machine Intelligence, Georg Brauchle Ring 60, D-80992 Munich, Germany
[3] Tech Univ Munich, Munich Inst Biomed Engn, Boltzmannstr 11, D-85748 Garching, Germany
[4] Tech Univ Munich TUM, Sch Computat Informat & Technol, Dept Elect Engn, Neuroelect, D-85748 Garching, Germany
来源
SMALL METHODS | 2024年
关键词
3D alginate microgels; 3D printing; mechanical stimulation of cells; mesenchymal stem cells; microfluidic cell encapsulation; single cell mechanotransduction; HYDROSTATIC-PRESSURE; DIFFERENTIATION; ENCAPSULATION;
D O I
10.1002/smtd.202400272
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, the novel 3D-printed pressure chamber for encapsulated single-cell stimulation (3D-PRESS) platform is introduced for the mechanical stimulation of single stem cells in 3D microgels. The custom-designed 3D-PRESS, allows precise pressure application up to 400 kPa at the single-cell level. Microfluidics is employed to encapsulate single mesenchymal stem cells within ionically cross-linked alginate microgels with cell adhesion RGD peptides. Rigorous testing affirms the leak-proof performance of the 3D-PRESS device up to 400 kPa, which is fully biocompatible. 3D-PRESS is implemented on mesenchymal stem cells for mechanotransduction studies, by specifically targeting intracellular calcium signaling and the nuclear translocation of a mechanically sensitive transcription factor. Applying 200 kPa pressure on individually encapsulated stem cells reveals heightened calcium signaling in 3D microgels compared to conventional 2D culture. Similarly, Yes-associated protein (YAP) translocation into the nucleus occurs at 200 kPa in 3D microgels with cell-binding RGD peptides unveiling the involvement of integrin-mediated mechanotransduction in singly encapsulated stem cells in 3D microgels. Combining live-cell imaging with precise mechanical control, the 3D-PRESS platform emerges as a versatile tool for exploring cellular responses to pressure stimuli, applicable to various cell types, providing novel insights into single-cell mechanobiology. 3D-PRESS platform. The importance of mechanically active culture microenvironments in controlling stem cell behavior for regenerative therapies is well-recognized. The 3D-PRESS platform enables precise pressure control up to 400 kPa alongside live-cell imaging capabilities. Through the platform, this study successfully demonstrates the activation of calcium signaling and YAP translocation in singly-encapsulated cells within alginate microgels. image
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Mechanoactivation of Color and Autonomous Shape Change in 3D-Printed Ionic Polymer Networks
    Basu, Amrita
    Wong, Jitkanya
    Cao, Bo
    Boechler, Nicholas
    Boydston, Andrew J.
    Nelson, Alshakim
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (16) : 19263 - 19270
  • [3] 3D-printed PCL scaffolds for the cultivation of mesenchymal stem cells
    Steffens, Daniela
    Rezende, Rodrigo Alvarenga
    Santi, Bruna
    Alencar de Sena Pereira, Frederico David
    Inforcatti Neto, Paulo
    Lopes da Silva, Jorge Vicente
    Pranke, Patricia
    JOURNAL OF APPLIED BIOMATERIALS & FUNCTIONAL MATERIALS, 2016, 14 (01) : E19 - E25
  • [4] Enhanced In Vivo Vascularization of 3D-Printed Cell Encapsulation Device Using Platelet-Rich Plasma and Mesenchymal Stem Cells
    Paez-Mayorga, Jesus
    Capuani, Simone
    Farina, Marco
    Lotito, Maria Luisa
    Niles, Jean A.
    Salazar, Hector F.
    Rhudy, Jessica
    Esnaola, Lucas
    Chua, Corrine Ying Xuan
    Taraballi, Francesca
    Corradetti, Bruna
    Shelton, Kathryn A.
    Nehete, Pramod N.
    Nichols, Joan E.
    Grattoni, Alessandro
    ADVANCED HEALTHCARE MATERIALS, 2020, 9 (19)
  • [5] 3D-Printed Simulation Device for Orbital Surgery
    Lichtenstein, Juergen Thomas
    Zeller, Alexander Nicolai
    Lemound, Juliana
    Lichtenstein, Thorsten Enno
    Rana, Majeed
    Gellrich, Nils-Claudius
    Wagner, Maximilian Eberhard
    JOURNAL OF SURGICAL EDUCATION, 2017, 74 (01) : 2 - 8
  • [7] A 3D-printed device for polymer nanoimprint lithography
    Cano-Garcia, Manuel
    Geday, Morten A.
    Gil-Valverde, Manuel
    Megias Zarco, Antonio
    Oton, Jose M.
    Quintana, Xabier
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2018, 89 (02):
  • [8] 96-Well Oxygen Control Using a 3D-Printed Device
    Szmelter, Adam
    Jacob, Jason
    Eddington, David T.
    ANALYTICAL CHEMISTRY, 2021, 93 (04) : 2570 - 2577
  • [9] 3D-Printed micro-optofluidic device for chemical fluids and cells detection
    Fabiana Cairone
    Santi Davi
    Giovanna Stella
    Francesca Guarino
    Giuseppe Recca
    Gianluca Cicala
    Maide Bucolo
    Biomedical Microdevices, 2020, 22
  • [10] 3D-Printed micro-optofluidic device for chemical fluids and cells detection
    Cairone, Fabiana
    Davi, Santi
    Stella, Giovanna
    Guarino, Francesca
    Recca, Giuseppe
    Cicala, Gianluca
    Bucolo, Maide
    BIOMEDICAL MICRODEVICES, 2020, 22 (02)