Experimental study of the fatigue failure behavior of aluminum alloy 2024-T351 under multiaxial loading

被引:3
|
作者
Liu, Xiaoting [1 ]
Guo, Wanjin [1 ,2 ]
Song, Xuding [1 ]
Dong, Yuanzhe [1 ]
Yang, Zhiyuan [1 ]
机构
[1] Changan Univ, Key Lab Rd Construction Technol & Equipment, Minist Educ, Xian 710064, Peoples R China
[2] EFt Intelligent Equipment Co Ltd, 96 Wanchun East Rd, Wuhu 241060, Peoples R China
关键词
Multiaxial fatigue; Damage evolution; Failure analysis; Fracture topography; Ductility; Aluminum alloy; Life prediction; LIFE PREDICTION; CRITERION; DAMAGE;
D O I
10.1016/j.engfailanal.2024.108684
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Multiaxial fatigue has been drawing much attention because it is more applicable to engineering practice. In this paper, an experimental study of aluminum alloy (AA) 2024-T351 was carried out under multiaxial loading with an aim to assess the damage evolution process and failure mechanism under in-phase and out-of-phase loadings. Firstly, fatigue life and stress response under multiaxial cyclic loads were obtained, and it found that although there is non-proportional hardening, the fatigue life subjected to proportional loading is significantly shorter than that of under a nonproportional loading, which was tried to be explained by the ductility of the material. Secondly, a detailed analysis of the damage evolution process based on the degradation of the elastic modulus and the fatigue failure process based on the digital image correlation (DIC) method was provided. Next, a micro-analysis of the specimens' fracture appearance was conducted to obtain the fracture characteristics and found that AA2024-T351 presents a dominant shear fracture mode under proportional loading and a mixed mode of tensile and shear fracture under non-proportional loading. Last but not least, The Fatemi-Socie criterion was modified by considering the material's ductility and the interaction between normal stress and shear stress acting on the critical plane. The multiaxial life prediction results of the modified FS model for AA2024-T351 in this paper were all within the scatter bands of 3 on life.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Fatigue Assessment of 2024-T351 Aluminum Alloy Under Uniaxial Cyclic Loading
    Chabouk, Ehsan
    Shariati, Mahmoud
    Kadkhodayan, Mehran
    Nejad, Reza Masoudi
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2021, 30 (04) : 2864 - 2875
  • [2] Fatigue Assessment of 2024-T351 Aluminum Alloy Under Uniaxial Cyclic Loading
    Ehsan Chabouk
    Mahmoud Shariati
    Mehran Kadkhodayan
    Reza Masoudi Nejad
    Journal of Materials Engineering and Performance, 2021, 30 : 2864 - 2875
  • [3] A study on fretting fatigue behaviors in 2024-T351 aluminum alloy
    Hwang, KJ
    Cho, WU
    Kwon, JH
    Korus 2005, Proceedings, 2005, : 471 - 474
  • [4] The Effect of Surface Engineering Treatments on the Fatigue Behavior of 2024-T351 Aluminum Alloy
    C.A. Rodopoulos
    A.Th. Kermanidis
    E. Statnikov
    V. Vityazev
    O. Korolkov
    Journal of Materials Engineering and Performance, 2007, 16 : 30 - 34
  • [5] The effect of surface engineering treatments on the fatigue behavior of 2024-T351 aluminum alloy
    Rodopoulos, C. A.
    Kermanidis, A. Th.
    Statnikov, E.
    Vityazev, V.
    Korolkov, O.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2007, 16 (01) : 30 - 34
  • [6] A formula for the crack opening level under random loading in 2024-T351 aluminum alloy
    Kim, Chung-Youb
    Song, Ji-Ho
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2014, 28 (02) : 521 - 525
  • [7] A formula for the crack opening level under random loading in 2024-T351 aluminum alloy
    Chung-Youb Kim
    Ji-Ho Song
    Journal of Mechanical Science and Technology, 2014, 28 : 521 - 525
  • [8] FATIGUE OF ALUMINUM-ALLOY 2024-T351 IN HUMID AND DRY AIR
    VORIS, HC
    JAHN, MT
    JOURNAL OF MATERIALS SCIENCE, 1990, 25 (11) : 4708 - 4711
  • [9] Observation, analysis and prediction of fretting fatigue in 2024-T351 aluminum alloy
    Szolwinski, MP
    Farris, TN
    WEAR, 1998, 221 (01) : 24 - 36
  • [10] Study of Cutting Forces in Drilling of Aluminum Alloy 2024-T351
    Craciun, Razvan Sebastian
    Teodor, Virgil Gabriel
    Baroiu, Nicusor
    Paunoiu, Viorel
    Morosanu, Georgiana-Alexandra
    MACHINES, 2024, 12 (12)