A Lightweight Remote Sensing Small Target Image Detection Algorithm Based on Improved YOLOv8

被引:5
|
作者
Nie, Haijiao [1 ]
Pang, Huanli [1 ]
Ma, Mingyang [1 ]
Zheng, Ruikai [1 ]
机构
[1] Changchun Univ Technol, Sch Comp Sci & Engn, Changchun 130012, Peoples R China
关键词
small object detection; remote sensing image; YOLOv8n; HPANet; SSFF;
D O I
10.3390/s24092952
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In response to the challenges posed by small objects in remote sensing images, such as low resolution, complex backgrounds, and severe occlusions, this paper proposes a lightweight improved model based on YOLOv8n. During the detection of small objects, the feature fusion part of the YOLOv8n algorithm retrieves relatively fewer features of small objects from the backbone network compared to large objects, resulting in low detection accuracy for small objects. To address this issue, firstly, this paper adds a dedicated small object detection layer in the feature fusion network to better integrate the features of small objects into the feature fusion part of the model. Secondly, the SSFF module is introduced to facilitate multi-scale feature fusion, enabling the model to capture more gradient paths and further improve accuracy while reducing model parameters. Finally, the HPANet structure is proposed, replacing the Path Aggregation Network with HPANet. Compared to the original YOLOv8n algorithm, the recognition accuracy of mAP@0.5 on the VisDrone data set and the AI-TOD data set has increased by 14.3% and 17.9%, respectively, while the recognition accuracy of mAP@0.5:0.95 has increased by 17.1% and 19.8%, respectively. The proposed method reduces the parameter count by 33% and the model size by 31.7% compared to the original model. Experimental results demonstrate that the proposed method can quickly and accurately identify small objects in complex backgrounds.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] A Remote Sensing Image Target Detection Algorithm Based on Improved YOLOv8
    Wang, Haoyu
    Yang, Haitao
    Chen, Hang
    Wang, Jinyu
    Zhou, Xixuan
    Xu, Yifan
    APPLIED SCIENCES-BASEL, 2024, 14 (04):
  • [2] Improved Lightweight Ship Target Detection Algorithm for Optical Remote Sensing Images with YOLOv8
    Yang, Zhiyuan
    Luo, Liang
    Wu, Tianyang
    Yu, Boxiang
    Computer Engineering and Applications, 60 (16): : 248 - 257
  • [3] Small Object Detection Algorithm Based on Improved YOLOv8 for Remote Sensing
    Yi, Hao
    Liu, Bo
    Zhao, Bin
    Liu, Enhai
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 1734 - 1747
  • [4] Remote-Sensing Image Object Detection Based on Improved YOLOv8 Algorithm
    Zhang Xiuzai
    Shen Tao
    Xu Dai
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (10)
  • [5] Improved YOLOv8 Lightweight UAV Target Detection Algorithm
    Hu, Junfeng
    Li, Baicong
    Zhu, Hao
    Huang, Xiaowen
    Computer Engineering and Applications, 2024, 60 (08) : 182 - 191
  • [6] Lightweight Small Target Detection Algorithm Based on YOLOv8 Network Improvement
    Hao, Xiaoyi
    Li, Ting
    IEEE Access, 2025, 13 : 14051 - 14062
  • [7] Helmet detection algorithm based on lightweight improved YOLOv8
    Maoli Wang
    Haitao Qiu
    Jiarui Wang
    Signal, Image and Video Processing, 2025, 19 (1)
  • [8] Small target detection in UAV view based on improved YOLOv8 algorithm
    Xiaoli Zhang
    Guocai Zuo
    Scientific Reports, 15 (1)
  • [9] An Improved Lightweight YOLOv8 Network for Early Small Flame Target Detection
    Du, Hubin
    Li, Qiuyu
    Guan, Ziqian
    Zhang, Hengyuan
    Liu, Yongtao
    PROCESSES, 2024, 12 (09)
  • [10] UAV Target Detection Algorithm Based on Improved YOLOv8
    Wang, Feng
    Wang, Hongyuan
    Qin, Zhiyong
    Tang, Jiaying
    IEEE ACCESS, 2023, 11 : 116534 - 116544