Cosmological inference using gravitational waves and normalizing flows

被引:0
|
作者
Stachurski, Federico [1 ]
Messenger, Christopher [1 ]
Hendry, Martin [1 ]
机构
[1] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow City, Scotland
基金
美国国家科学基金会;
关键词
HUBBLE CONSTANT; POPULATION; MASS; DESI;
D O I
10.1103/PhysRevD.109.123547
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a machine learning approach using normalizing flows for inferring cosmological parameters from gravitational wave events. Our methodology is general to any type of compact binary coalescence event and cosmological model and relies on the generation of training data representing distributions of gravitational wave event parameters. These parameters are conditional on the underlying cosmology and incorporate prior information from galaxy catalogues. We provide an example analysis inferring the Hubble constant using binary black holes detected during the O1, O2, and O3 observational runs conducted by the advanced LIGO/VIRGO gravitational wave detectors. We obtain a Bayesian posterior on the Hubble constant from which we derive an estimate and 1a confidence bounds of H0 = 74.51 & thorn;14.80 We are able to compute this result in O(1) s using our trained normalizing flow model.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Nested sampling with normalizing flows for gravitational-wave inference
    Williams, Michael J.
    Veitch, John
    Messenger, Chris
    [J]. PHYSICAL REVIEW D, 2021, 103 (10)
  • [2] Variational Inference with Normalizing Flows
    Rezende, Danilo Jimenez
    Mohamed, Shakir
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 1530 - 1538
  • [3] On the cosmological gravitational waves and cosmological distances
    Belinski, V. A.
    Vereshchagin, G. V.
    [J]. PHYSICS LETTERS B, 2018, 778 : 332 - 338
  • [4] Normalizing Flows for Probabilistic Modeling and Inference
    Papamakarios, George
    Nalisnick, Eric
    Rezende, Danilo Jimenez
    Mohamed, Shakir
    Lakshminarayanan, Balaji
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22
  • [5] Normalizing flows for probabilistic modeling and inference
    Papamakarios, George
    Nalisnick, Eric
    Rezende, Danilo Jimenez
    Mohamed, Shakir
    Lakshminarayanan, Balaji
    [J]. 2021, Microtome Publishing (22)
  • [6] Sylvester Normalizing Flows for Variational Inference
    van den Berg, Rianne
    Hasenclever, Leonard
    Tomczak, Jakub M.
    Welling, Max
    [J]. UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2018, : 393 - 402
  • [7] Inference of cosmological parameters from gravitational waves: Applications to second generation interferometers
    Del Pozzo, Walter
    [J]. PHYSICAL REVIEW D, 2012, 86 (04)
  • [8] Cosmological backgrounds of gravitational waves
    Caprini, Chiara
    Figueroa, Daniel G.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (16)
  • [9] Remarks on cosmological gravitational waves
    Valtancoli, P.
    [J]. ANNALS OF PHYSICS, 2018, 394 : 225 - 229
  • [10] Cosmological waveguides for gravitational waves
    Bimonte, G
    Capozziello, S
    Man'ko, V
    Marmo, G
    [J]. PHYSICAL REVIEW D, 1998, 58 (10)