Spongy polyelectrolyte hydrogel with Janus porous for solar-driven interfacial evaporation and sustainable seawater desalination

被引:0
|
作者
Luo, Jiarong [1 ]
Tian, Zhuoyue [2 ]
Chen, Juanli [1 ]
Wen, Xiufang [2 ]
Cai, Kui [3 ]
Yang, Zhensheng [1 ]
Fang, Jing [1 ]
Li, Hao [1 ]
机构
[1] Hebei Univ Technol, Sch Chem Engn & Technol, Natl Local Joint Engn Lab Energy Conservat Chem Pr, Tianjin 300130, Peoples R China
[2] South China Univ Technol, Sch Chem & Chem Engn, Guangzhou 510640, Guangdong, Peoples R China
[3] Hunan Univ Technol & Business, Sch Foreign Languages, Changsha 410205, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Janus; Desalination; Heat loss; Evaporation performance;
D O I
10.1016/j.colsurfa.2024.134645
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper inspired by the design principles of Janus materials, and in a continuation of our recent studies on photothermal materials. Herein, we introduce a novel concept of "bottom-up" sponge-like polymer-electrolyte hydrogel (PANS-J) with abundant Janus pore structure and different wettability between upper and bottom sides. Evaporation experiments demonstrate that PANS-J achieves the highest evaporation rate (3.35 kg m-2 h-1)-1 ) and efficiency (93.94 %) under 1 sunlight ((1 kW m-2).-2 ). In addition, the quaternary ammonium cation on PDADMAC effectively separates the anions and cations in the brine, reduces the diffusion of salt ions into the evaporator, prevents premature clogging of the pore structure, and is conducive to the improvement of the long-term evaporation performance of the evaporator, as well as possessing very excellent salt resistance and mechanical properties.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Optimization of Evaporation and Condensation Architectures for Solar-Driven Interfacial Evaporation Desalination
    Pan, Cheng
    Yang, Yawei
    Xie, Mingze
    Deng, Qingyuan
    Cheng, Xiang
    Wang, Xianlei
    Zhao, Shihan
    Wei, Yumeng
    Que, Wenxiu
    [J]. MEMBRANES, 2022, 12 (09)
  • [2] Porous TiNO solar-driven interfacial evaporator for high-efficiency seawater desalination
    Chang, Chao
    Liu, Min
    Pei, Lilin
    Chen, Guowei
    Wang, Zongyu
    Ji, Yulong
    [J]. AIP ADVANCES, 2021, 11 (04)
  • [3] Spongy polyelectolyte hydrogel for efficient Solar-Driven interfacial evaporation with high salt resistance and compression resistance
    Zhao, Jinmin
    Chu, Aqiang
    Chen, Juanli
    Qiao, Pengju
    Fang, Jing
    Yang, Zhensheng
    Duan, Zhongyu
    Li, Hao
    [J]. CHEMICAL ENGINEERING JOURNAL, 2024, 485
  • [4] Towards highly efficient solar-driven interfacial evaporation for desalination
    Liu, Xinghang
    Mishra, Debesh Devadutta
    Wang, Xianbao
    Peng, Hongyan
    Hu, Chaoquan
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (35) : 17907 - 17937
  • [5] Porous TiNO solar-driven interfacial evaporator yields high-efficiency seawater desalination
    Alejandro Burgos-Suazo
    [J]. MRS Bulletin, 2021, 46 : 880 - 880
  • [6] Porous TiNO solar-driven interfacial evaporator yields high-efficiency seawater desalination
    Burgos-Suazo, Alejandro
    [J]. MRS BULLETIN, 2021, 46 (10) : 880 - 880
  • [7] Solar-driven interfacial evaporation for sustainable desalination: Evaluation of current salt-resistant strategies
    Sun, Yuqing
    Tan, Xinyan
    Xiang, Bin
    Gong, Jingling
    Li, Jian
    [J]. CHEMICAL ENGINEERING JOURNAL, 2023, 474
  • [8] Solar-driven interfacial evaporation
    Peng Tao
    George Ni
    Chengyi Song
    Wen Shang
    Jianbo Wu
    Jia Zhu
    Gang Chen
    Tao Deng
    [J]. Nature Energy, 2018, 3 : 1031 - 1041
  • [9] Nanofibrous hydrogel-reduced graphene oxide membranes for effective solar-driven interfacial evaporation and desalination
    Zang, Linlin
    Sun, Liguo
    Zhang, Shaochun
    Finnerty, Casey
    Kim, Albert
    Ma, Jun
    Mi, Baoxia
    [J]. CHEMICAL ENGINEERING JOURNAL, 2021, 422
  • [10] Solar-driven interfacial evaporation
    Tao, Peng
    Ni, George
    Song, Chengyi
    Shang, Wen
    Wu, Jianbo
    Zhu, Jia
    Chen, Gang
    Deng, Tao
    [J]. NATURE ENERGY, 2018, 3 (12): : 1031 - 1041