Surface Modification of PVDF and PTFE Hollow Fiber Membranes for Enhanced Nitrogen Removal in a Membrane-Aerated Biofilm Reactor

被引:0
|
作者
Zai, Wenfeng [1 ,2 ]
Chen, Yangman [2 ,3 ]
Qin, Qingdong [3 ]
Li, Xiangkun [1 ]
Liu, Dezhao [2 ,4 ]
机构
[1] Hebei Univ Technol, Sch Civil & Transportat Engn, Tianjin 300401, Peoples R China
[2] Zhejiang Univ, Inst Agribiol Environm Engn, Coll Biosyst Engn & Food Sci, Hangzhou 310058, Peoples R China
[3] Southeast Univ, Sch Civil Engn, Nanjing 211189, Peoples R China
[4] Minist Agr & Rural Affairs China, Key Lab Equipment & Informatizat Environm Controll, Key Lab Intelligent Equipment & Robot Agr Zhejiang, Hangzhou 310058, Peoples R China
基金
国家重点研发计划;
关键词
membrane-aerated biofilm reactor; plasma modification; nitrogen removal; PVDF; PTFE; ACTIVATED-SLUDGE; WATER; BACTERIA; PERFORMANCE; PRINCIPLES;
D O I
10.3390/w16121747
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Highlights Plasma-grafting acrylic acid composite membrane for MABR was prepared. Higher O2 transfer rate and better hydrophilicity for modified membranes than pristine. Modified PVDF membrane demonstrated superior nitrogen removal during startup. Activity of denitrifying bacteria was enhanced in the modified PVDF MABR.Abstract Microporous membranes such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) often exhibit suboptimal hydrophilicity and microbial adhesion, which impede effective nitrogen removal in membrane-aerated biofilm reactors (MABRs), particularly during initial operational phases. To address this issue, the present study introduced acrylic acid (AA) following plasma treatment (P) to enhance membrane performance, thereby engineering a novel composite material optimized for MABR applications. Four MABRs-Reactor with pristine PVDF membrane (R-PVDF), Reactor with composite PVDF membrane (R-PVDF-P-AA), Reactor with pristine PTFE membrane (R-PTFE), and Reactor with composite PTFE membrane (R-PTFE-P-AA)-were evaluated. The modified membranes displayed enhanced roughness and hydrophilicity, which improved biocompatibility and variably increased the oxygen transfer efficiency. Notably, the R-PVDF-P-AA configuration showed a significant enhancement in the removal rates of NH4+-N and total nitrogen (TN), achieving 78.5% and 61.3%, respectively, which was markedly higher than those observed with the original membranes. In contrast, the modified R-PTFE-P-AA exhibited lower removal efficiencies, with NH4+-N and TN reductions of approximately 60.0% and 49.5%. Detailed microbial community analysis revealed that the R-PVDF-P-AA membrane supported robust commensalism between ammonia-oxidizing and denitrifying bacteria, underpinning the improved performance. These findings highlight the critical role of surface chemistry and microbial ecology in optimizing the function of MABRs.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Surface modification of PVDF hollow fiber membrane and its application in membrane aerated biofilm reactor (MABR)
    Hou, Feifei
    Li, Baoan
    Xing, Minghao
    Wang, Qin
    Hu, Liang
    Wang, Shichang
    BIORESOURCE TECHNOLOGY, 2013, 140 : 1 - 9
  • [2] Nitrogen removal performances of a polyvinylidene fluoride membrane-aerated biofilm reactor
    Lin, Jiayi
    Zhang, Panyue
    Yin, Jiang
    Zhao, Xuehao
    Li, Juan
    INTERNATIONAL BIODETERIORATION & BIODEGRADATION, 2015, 102 : 49 - 55
  • [3] Partial nitrification in a membrane-aerated biofilm reactor with composite PEBA/PVDF hollow fibers
    Nisola, Grace M.
    Orata-Flor, Jennica
    Oh, Sehee
    Yoo, Namjong
    Chung, Wook-Jin
    DESALINATION AND WATER TREATMENT, 2013, 51 (25-27) : 5275 - 5282
  • [4] Enhancement of biofilm formation onto surface-modified hollow-fiber membranes and its application to a membrane-aerated biofilm reactor
    Terada, A
    Yamamoto, T
    Hibiya, K
    Tsuneda, S
    Hirata, A
    WATER SCIENCE AND TECHNOLOGY, 2004, 49 (11-12) : 263 - 268
  • [5] Enhanced biological nitrogen and phosphorus removal using sequencing batch membrane-aerated biofilm reactor
    Sun, Linquan
    Wang, Ziyi
    Wei, Xin
    Li, Peng
    Zhang, Huimin
    Li, Mei
    Li, Baoan
    Wang, Shichang
    CHEMICAL ENGINEERING SCIENCE, 2015, 135 : 559 - 565
  • [6] Membrane Surface Woven Nylon Fillers Enhance Carbon and Nitrogen Removal of Membrane-Aerated Biofilm Reactor
    Li, Jianguo
    Zheng, Shikan
    Yan, Wanli
    Ye, Chengsong
    Yu, Xin
    ACS ES&T WATER, 2024, : 3027 - 3036
  • [7] Organic Matter Removal in a Membrane-Aerated Biofilm Reactor
    da Silva, Tatiana Santos
    Matsumoto, Tsunao
    dos Anjos, Mariane Luz
    Albertin, Liliane Lazzari
    JOURNAL OF ENVIRONMENTAL ENGINEERING, 2018, 144 (08)
  • [8] The treatment of surface water with enhanced membrane-aerated biofilm reactor (MABR)
    Li, Peng
    Li, Mei
    Zhang, Yunge
    Zhang, Huimin
    Sun, Linquan
    Li, Baoan
    CHEMICAL ENGINEERING SCIENCE, 2016, 144 : 267 - 274
  • [9] Effect of COD/N ratio on nitrogen removal in a membrane-aerated biofilm reactor
    Lin, Jiayi
    Zhang, Panyue
    Li, Gaopeng
    Yin, Jiang
    Li, Juan
    Zhao, Xuehao
    INTERNATIONAL BIODETERIORATION & BIODEGRADATION, 2016, 113 : 74 - 79
  • [10] Autotrophic Nitrogen Removal in a Membrane-Aerated Biofilm Reactor Under Continuous Aeration: A Demonstration
    Gilmore, Kevin R.
    Terada, Akihiko
    Smets, Barth F.
    Love, Nancy G.
    Garland, Jay L.
    ENVIRONMENTAL ENGINEERING SCIENCE, 2013, 30 (01) : 38 - 45