Clinical Evaluation of Deep Learning for Tumor Delineation on 18F-FDG PET/CT of Head and Neck Cancer

被引:0
|
作者
Kovacs, David G. [1 ,2 ]
Ladefoged, Claes N. [1 ,3 ]
Andersen, Kim F. [1 ]
Brittain, Jane M. [1 ]
Christensen, Charlotte B. [4 ]
Dejanovic, Danijela [1 ]
Hansen, Naja L. [1 ]
Loft, Annika [1 ]
Petersen, Jorgen H. [5 ]
Reichkendler, Michala [1 ]
Andersen, Flemming L. [1 ,2 ]
Fischer, Barbara M. [1 ,2 ,6 ]
机构
[1] Univ Copenhagen, Dept Clin Physiol & Nucl Med, Copenhagen, Denmark
[2] Univ Copenhagen, Fac Hlth & Med Sci, Dept Clin Med, Copenhagen, Denmark
[3] Tech Univ Denmark, Dept Appl Math & Comp Sci, Lyngby, Denmark
[4] Univ Copenhagen, Herlev Hosp, Dept Clin Physiol & Nucl Med, Copenhagen, Denmark
[5] Univ Copenhagen, Inst Publ Hlth, Fac Hlth Sci, Sect Biostat, Copenhagen, Denmark
[6] Kings Coll London, PET Ctr, Sch Biomed Engn & Imaging Sci, London, England
关键词
18 F- FDG PET/CT; head and neck cancer; tumor volume delineation; imaging biomarkers; deep learning; MANAGEMENT; IMPACT;
D O I
10.2967/jnumed.123.266574
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Artificial intelligence (AI) may decrease 18 F - FDG PET/CT-based gross tumor volume (GTV) delineation variability and automate tumorvolume-derived image biomarker extraction. Hence, we aimed to identify and evaluate promising state-of-the-art deep learning methods for head and neck cancer (HNC) PET GTV delineation. Methods: We trained and evaluated deep learning methods using retrospectively included scans of HNC patients referred for radiotherapy between January 2014 and December 2019 (ISRCTN16907234). We used 3 test datasets: an internal set to compare methods, another internal set to compare AI-to-expert variability and expert interobserver variability (IOV), and an external set to compare internal and external AI-to-expert variability. Expert PET GTVs were used as the reference standard. Our benchmark IOV was measured using the PET GTV of 6 experts. The primary outcome was the Dice similarity coefficient (DSC). ANOVA was used to compare methods, a paired t test was used to compare AI-to-expert variability and expert IOV, an unpaired t test was used to compare internal and external AI-toexpert variability, and post hoc Bland-Altman analysis was used to evaluate biomarker agreement. Results: In total, 1,220 18 F - FDG PET/CT scans of 1,190 patients (mean age +/- SD, 63 +/- 10 y; 858 men) were included, and 5 deep learning methods were trained using 5-fold cross-validation ( n = 805). The nnU-Net method achieved the highest similarity (DSC, 0.80 [95% CI, 0.77-0.86]; n = 196). We found no evidence of a difference between expert IOV and AI-to-expert variability (DSC, 0.78 for AI vs. 0.82 for experts; mean difference of 0.04 [95% CI, - 0.01 to 0.09]; P = 0.12; n = 64). We found no evidence of a difference between the internal and external AI-to-expert variability (DSC, 0.80 internally vs. 0.81 externally; mean difference of 0.004 [95% CI, - 0.05 to 0.04]; P = 0.87; n = 125). PET GTV-derived biomarkers of AI were in good agreement with experts. Conclusion: Deep learning can be used to automate 18 F - FDG PET/CT tumorvolume-derived imaging biomarkers, and the deep-learning-based volumes have the potential to assist clinical tumor volume delineation in radiation oncology.
引用
收藏
页码:623 / 629
页数:7
相关论文
共 50 条
  • [1] 18F-FDG PET/CT in head and neck cancer
    Kresnik, E
    Gallowitsch, HJ
    Igerc, I
    Gomez, I
    Reinprecht, P
    Hausegger, K
    Lind, P
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2004, 31 : S325 - S325
  • [2] Role of 18F-FDG PET/CT in the evaluation of head and neck cancer
    Nanni, C
    Farsad, M
    Castellucci, P
    Savastio, G
    Scarale, N
    Neri, G
    Caliceti, U
    Guidalotti, PL
    Gavaruzzi, G
    Levorato, M
    Zagni, P
    Magagnoli, G
    Fanti, S
    Franchi, R
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2004, 31 : S325 - S326
  • [3] 18F-FDG PET/CT in staging and delineation of radiotherapy volume for head and neck cancer
    Pedraza, S.
    Ruiz-Alonso, A.
    Hernandez-Martinez, A. C.
    Cabello, E.
    Lora, D.
    Perez-Regadera, J. F.
    REVISTA ESPANOLA DE MEDICINA NUCLEAR E IMAGEN MOLECULAR, 2019, 38 (03): : 154 - 159
  • [4] Performance evaluation of 18F-FDG PET/CT tumour delineation methods for volume assessment in head and neck cancer (SCCHN)
    Lorenz, R.
    Boehm, A.
    Fischer, M.
    Kurch, L.
    Georgi, T. W.
    Hasenclever, D.
    Wichmann, G.
    Dietz, A.
    Sabri, O.
    Kluge, R.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2016, 43 : S57 - S57
  • [5] Initial clinical results of simultaneous 18F-FDG PET/MRI in comparison to 18F-FDG PET/CT in patients with head and neck cancer
    Kubiessa, K.
    Purz, S.
    Gawlitza, M.
    Kuehn, A.
    Fuchs, J.
    Steinhoff, K. G.
    Boehm, A.
    Sabri, O.
    Kluge, R.
    Kahn, T.
    Stumpp, P.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2014, 41 (04) : 639 - 648
  • [6] Initial clinical results of simultaneous 18F-FDG PET/MRI in comparison to 18F-FDG PET/CT in patients with head and neck cancer
    K. Kubiessa
    S. Purz
    M. Gawlitza
    A. Kühn
    J. Fuchs
    K. G. Steinhoff
    A. Boehm
    O. Sabri
    R. Kluge
    T. Kahn
    P. Stumpp
    European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41 : 639 - 648
  • [7] Update 2018: 18F-FDG PET/CT and PET/MRI in Head and Neck Cancer
    Sanli, Yasemin
    Zukotynski, Katherine
    Mittra, Erik
    Chen, Delphine L.
    Nadel, Helen
    Niederkohr, Ryan D.
    Subramaniam, Rathan M.
    CLINICAL NUCLEAR MEDICINE, 2018, 43 (12) : E439 - E452
  • [8] 18F-FDG PET/CT texture analysis in patients with head and neck cancer
    Larobina, M.
    Salvatore, B.
    Fonti, R.
    Solla, R.
    Murino, L.
    Brunetti, A.
    Del Vecchio, S.
    Cuocolo, A.
    Pace, L.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2018, 45 : S251 - S251
  • [9] 18F-FET PET compared with 18F-FDG PET and CT in patients with head and neck cancer
    Pauleit, D
    Zimmermann, A
    Stoffels, G
    Bauer, D
    Risse, J
    Flüss, MO
    Hamacher, K
    Coenen, HH
    Langen, KJ
    JOURNAL OF NUCLEAR MEDICINE, 2006, 47 (02) : 256 - 261
  • [10] Evaluation of head and neck cancer with 18F-FDG PET: a comparison with conventional methods
    E. Kresnik
    P. Mikosch
    H. Gallowitsch
    D. Kogler
    S. Wieser
    M. Heinisch
    O. Unterweger
    W. Raunik
    G. Kumnig
    I. Gomez
    G. Grünbacher
    P. Lind
    European Journal of Nuclear Medicine, 2001, 28 : 816 - 821