Fast Point Cloud Registration for Urban Scenes via Pillar-Point Representation

被引:0
|
作者
Gu, Siyuan [1 ]
Huang, Ruqi [1 ]
机构
[1] Tsinghua Berkeley Shenzhen Inst, Tsinghua Shenzhen Int Grad Sch, Shenzhen, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Point cloud registration; Pillar-point representation; Semi-dense keypoint matching;
D O I
10.1007/978-981-99-8850-1_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Efficient and robust point cloud registration is an essential task for real-time applications in urban scenes. Most methods introduce keypoint sampling or detection to achieve real-time registration of large-scale point clouds. Recent advances in keypoint-free methods have succeeded in alleviating the bias and error introduced by keypoint detection via coarse-to-fine dense matching strategies. Nevertheless, the running time performance of such a strategy turns out to be far inferior to keypoint methods. This paper proposes a novel framework that adopts a pillar-point representation based feature extraction pipeline and a three-stage semi-dense keypoint matching scheme. The scheme includes global coarse matching, anchor generation and local dense matching for efficient correspondence matching. Experiments on large-scale outdoor datasets, including KITTI and NuScenes, demonstrate that the proposed feature representation and matching framework achieve real-time inference and high registration recall.
引用
收藏
页码:256 / 268
页数:13
相关论文
共 50 条
  • [1] DDRNet: Fast point cloud registration network for large-scale scenes
    Zhang, Zhenghua
    Chen, Guoliang
    Wang, Xuan
    Shu, Mingcong
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 175 : 184 - 198
  • [2] PCRMLP: A Two-Stage Network for Point Cloud Registration in Urban Scenes
    Liu, Jingyang
    Xu, Yucheng
    Zhou, Lu
    Sun, Lei
    [J]. SENSORS, 2023, 23 (12)
  • [3] Automatic registration of point cloud and panoramic images in urban scenes based on pole matching
    Wang, Yuan
    Li, Yuhao
    Chen, Yiping
    Peng, Mingjun
    Li, Haiting
    Yang, Bisheng
    Chen, Chi
    Dong, Zhen
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 115
  • [4] Double Sparse Representation for Point Cloud Registration
    Sun, Lu
    Manabe, Yoshitsugu
    Yata, Noriko
    [J]. ITE TRANSACTIONS ON MEDIA TECHNOLOGY AND APPLICATIONS, 2019, 7 (03): : 148 - 158
  • [5] Feature Interactive Representation for Point Cloud Registration
    Wu, Bingli
    Ma, Jie
    Chen, Gaojie
    An, Pei
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 5510 - 5519
  • [6] Contextual Global Registration of Point Clouds in Urban Scenes
    Ge, Xuming
    Wu, Bo
    [J]. PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2019, 85 (08): : 559 - 571
  • [7] TEASER: Fast and Certifiable Point Cloud Registration
    Yang, Heng
    Shi, Jingnan
    Carlone, Luca
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2021, 37 (02) : 314 - 333
  • [8] Urban road scenes utilize lightweight fast point cloud auto-registration of poles-like and lane lines
    Zhao, Huiyou
    Wu, Xuequn
    Xia, Yonghua
    [J]. Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2024, 32 (04): : 535 - 548
  • [9] AUTOMATIC REGISTRATION OF APPROXIMATELY LEVELED POINT CLOUDS OF URBAN SCENES
    Moussa, A.
    Elsheimy, N.
    [J]. ISPRS GEOSPATIAL WEEK 2015, 2015, II-3 (W5): : 145 - 150
  • [10] Scale Variable Fast Global Point Cloud Registration
    Zhang, Cong-Yi
    Wei, Zi-Zhuang
    Xu, Hao-Wen
    Chen, Yi-Song
    Wang, Guo-Ping
    [J]. Jisuanji Xuebao/Chinese Journal of Computers, 2019, 42 (09): : 1939 - 1952