FDM 3D-PRINTED THERMOPLASTIC ELASTOMERS: EXPERIMENTS, MODELING, AND INFLUENCE OF PROCESS PARAMETERS ON PROPERTIES

被引:0
|
作者
Hripko, Brad [1 ]
Hoover, Luke [1 ]
Damodara, Priyadarsini [1 ]
Reissman, Timothy [1 ]
Lowe, Robert [1 ]
机构
[1] Univ Dayton, Dept Mech & Aerosp Engn, Dayton, OH 45469 USA
关键词
3D printing; additive manufacturing; FDM; elastomer; process parameters; mechanical properties; constitutive modeling; finite element; prosthetic;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Soft, ultra-stretchable thermoplastic elastomers have recently became available for use with desktop, fused deposition modeling printers. However, the effects of additive manufacturing process parameters on final mechanical properties are presently not well-known for this class of materials, making predictive modeling and product design difficult. Here we perform a design of experiments investigation of an elastomeric material that the manufacturer claims to have up to 580% strain at fracture. Within the investigation, two factors, extrusion temperature and layer height, are selected as independent variables and mechanical properties are extracted as dependent variables based on quasi-static tension tests following ASTM D412. Primary statistical results, based on an Analysis of Variance, indicate that hotter extrusion temperatures exhibit higher Young's moduli (at small strain), lower ultimate tensile strength, and higher fracture strain. Further, the layer thickness is not a factor unless evaluating performance at small strain, in which case it is significant and thicker layers will yield higher Young's moduli. Several popular hyperelastic constitutive models are calibrated to our tensile data, and a preliminary finite-element simulation of a soft prosthetic finger is performed to demonstrate the potential role of predictive simulations in 3D-printed product design.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] The influence of printing parameters on selected mechanical properties of FDM/FFF 3D-printed parts
    Cwikla, G.
    Grabowik, C.
    Kalinowski, K.
    Paprocka, I.
    Ociepka, P.
    MODTECH INTERNATIONAL CONFERENCE - MODERN TECHNOLOGIES IN INDUSTRIAL ENGINEERING V, 2017, 227
  • [2] Effect of FDM process parameters on mechanical properties of 3D-printed carbon fibre–PLA composite
    M. Kamaal
    M. Anas
    H. Rastogi
    N. Bhardwaj
    A. Rahaman
    Progress in Additive Manufacturing, 2021, 6 : 63 - 69
  • [3] Effect of FDM process parameters on mechanical properties of 3D-printed carbon fibre-PLA composite
    Kamaal, M.
    Anas, M.
    Rastogi, H.
    Bhardwaj, N.
    Rahaman, A.
    PROGRESS IN ADDITIVE MANUFACTURING, 2021, 6 (01) : 63 - 69
  • [4] Effect of the manufacturing parameters on the tensile and fracture properties of FDM 3D-printed PLA specimens
    Marsavina, Liviu
    Valean, Cristina
    Marghitas, Mihai
    Linul, Emanoil
    Razavi, Nima
    Berto, Filippo
    Brighenti, Roberto
    ENGINEERING FRACTURE MECHANICS, 2022, 274
  • [5] Effect of Process Parameters on the Hardness of 3D-printed Thermoplastic Polyurethane that Includes Foaming Agent
    Iacob, Mariana Cristiana
    Popescu, Diana
    Baciu, Florin
    MATERIALE PLASTICE, 2023, 60 (04) : 144 - 154
  • [6] Influence of slicing parameters on surface quality and mechanical properties of 3D-printed CF/PLA composites fabricated by FDM technique
    Vinoth Babu, N.
    Venkateshwaran, N.
    Rajini, N.
    Ismail, Sikiru Oluwarotimi
    Mohammad, Faruq
    Al-Lohedan, Hamad A.
    Siengchin, Suchart
    MATERIALS TECHNOLOGY, 2022, 37 (09) : 1008 - 1025
  • [7] Electroosmotic flow in fused deposition modeling (FDM) 3D-printed microchannels
    Barbosa, Fabio Henrique Barros
    Quero, Reverson Fernandes
    Rocha, Kionnys Novaes
    Costa, Samuel Carvalho
    de Jesus, Dosil Pereira
    ELECTROPHORESIS, 2023, 44 (5-6) : 558 - 562
  • [8] Effect of process parameters on mechanical properties of 3d printed samples using FDM process
    Giri, Jayant
    Chiwande, Anagha
    Gupta, Yash
    Mahatme, Chetan
    Giri, Pallavi
    MATERIALS TODAY-PROCEEDINGS, 2021, 47 : 5856 - 5861
  • [9] Optimization of Manufacturing Parameters and Tensile Specimen Geometry for Fused Deposition Modeling (FDM) 3D-Printed PETG
    Oezen, Arda
    Auhl, Dietmar
    Voellmecke, Christina
    Kiendl, Josef
    Abali, Bilen Emek
    MATERIALS, 2021, 14 (10)
  • [10] Investigate the effects of process parameters on material properties and microstructural changes of 3D-printed specimens using fused deposition modelling (FDM)
    Naveed, N.
    MATERIALS TECHNOLOGY, 2021, 36 (05) : 317 - 330