GraphInterpreter: a visual analytics approach for dynamic networks evolution exploration via topic models

被引:0
|
作者
Lin, Lijing [1 ,2 ]
Yu, Jiacheng [2 ,3 ]
Hong, Fan [1 ,2 ]
Lai, Chufan [1 ,2 ]
Chen, Siming [4 ]
Yuan, Xiaoru [1 ,2 ]
机构
[1] Peking Univ, Sch Intelligence Sci & Technol, Key Lab Machine Percept, Minist Educ, Beijing, Peoples R China
[2] Peking Univ, Natl Engn Lab Big Data Anal & Applicat, Beijing, Peoples R China
[3] Peking Univ, Acad Adv Interdisciplinary Studies, Ctr Data Sci, Beijing, Peoples R China
[4] Fudan Univ, Sch Data Sci, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Visual analytics; Dynamic networks; Topic models; VISUALIZATION; GRAPHAEL; FIT;
D O I
10.1007/s12650-024-00993-z
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a novel visual analytics approach based on the Latent Dirichlet Allocation (LDA) model for exploring and interpreting the dynamic evolution of networks. In this approach, we define networks as documents and relationships within networks as words. Using this definition, the LDA model is able to extract a list of structures that fuse relationships and connect the network features. We project networks described by the extracted structures with probabilistic assignments as points into a two-dimensional space via dimensionality reduction techniques. Users can identify evolution states in dynamic networks, including stable states, recurrent states, outlier states, and state transitions. To facilitate the interpretation of evolution states, we provide a novel small multiples view that shows how the extracted structures behave over time. We demonstrate the effectiveness of our work through case studies conducted on two real-world dynamic networks.
引用
收藏
页码:909 / 924
页数:16
相关论文
共 50 条
  • [1] An Interactive System for Visual Analytics of Dynamic Topic Models
    Günnemann, Nikou
    Derntl, Michael
    Klamma, Ralf
    Jarke, Matthias
    [J]. Datenbank-Spektrum, 2013, 13 (03) : 213 - 223
  • [2] A Visual Analytics Approach to Dynamic Network Exploration
    van den Elzen, Stef
    Holten, Danny
    Blaas, Jorik
    van Wijk, Jarke J.
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2016, 22 (01) : 1 - 10
  • [3] Visual exploration of software evolution via topic modeling
    Huan Liu
    Yubo Tao
    Yining Qiu
    Wenda Huang
    Hai Lin
    [J]. Journal of Visualization, 2021, 24 : 827 - 844
  • [4] Visual exploration of software evolution via topic modeling
    Liu, Huan
    Tao, Yubo
    Qiu, Yining
    Huang, Wenda
    Lin, Hai
    [J]. JOURNAL OF VISUALIZATION, 2021, 24 (04) : 827 - 844
  • [5] GCex: a Visual Analytics approach for interactive exploration of geochemical models
    De Lucia, Marco
    Jatnieks, Janis
    Sips, Mike
    [J]. EUROPEAN GEOSCIENCES UNION GENERAL ASSEMBLY 2015 - DIVISION ENERGY, RESOURCES AND ENVIRONMENT, EGU 2015, 2015, 76 : 616 - 622
  • [6] Visual exploration of Internet news via sentiment score and topic models
    Songye Han
    Shaojie Ye
    Hongxin Zhang
    [J]. Computational Visual Media, 2020, 6 (03) : 333 - 347
  • [7] Visual exploration of Internet news via sentiment score and topic models
    Songye Han
    Shaojie Ye
    Hongxin Zhang
    [J]. Computational Visual Media, 2020, 6 : 333 - 347
  • [8] Visual exploration of Internet news via sentiment score and topic models
    Han, Songye
    Ye, Shaojie
    Zhang, Hongxin
    [J]. COMPUTATIONAL VISUAL MEDIA, 2020, 6 (03) : 333 - 347
  • [9] A Visual Analytics Approach to Compare Propagation Models in Social Networks
    Vallet, Jason
    Kirchner, Helene
    Pinaud, Bruno
    Melancon, Guy
    [J]. ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2015, (181): : 65 - 79
  • [10] AcaVis: A Visual Analytics Framework for Exploring Evolution of Dynamic Academic Networks
    Lu, Qiang
    Wen, Dajiu
    Huang, Wenjiao
    Lin, Tianyue
    Ma, Cheng
    [J]. COMPUTER SUPPORTED COOPERATIVE WORK AND SOCIAL COMPUTING, CHINESECSCW 2021, PT II, 2022, 1492 : 499 - 511