Design of sports achievement prediction system based on U-net convolutional neural network in the context of machine learning

被引:0
|
作者
Wang, Guoliang [1 ]
Ren, Tianping [1 ]
机构
[1] Henan Polytech Univ, Coll Sport, Jiaozuo 454003, Henan, Peoples R China
关键词
Machine learning; U -Net convolutional neural network; Achievement prediction; Dense connection; Attention module; Residual learning; VIRTUAL-REALITY;
D O I
10.1016/j.heliyon.2024.e30055
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Sports plays a pivotal role in national development. To accurately predict college students' sports performance and motivate them to improve their physical fitness, this study constructs a sports achievement prediction system by using a U -Net Convolutional Neural Network (CNN) in machine learning. Firstly, the current state of physical education teachers' instructional proficiency is investigated and analyzed to identify existing problems. Secondly, an improved U -Net -based sports achievement prediction system is proposed. This method enhances the utilization and propagation of network features by incorporating dense connections, thus addressing gradient disappearance issues. Simultaneously, an improved mixed loss function is introduced to alleviate class imbalance. Finally, the effectiveness of the proposed system is validated through testing, demonstrating that the improved U -Net CNN algorithm yields superior results. Specifically, the prediction accuracy of the improved network for sports performance surpasses that of the original U -Net by 4.22 % and exceeds that of DUNet by 5.22 %. Compared with other existing prediction networks, the improved U -Net CNN model exhibits a superior achievement prediction ability. Consequently, the proposed system enhances teaching and learning efficiency and offers insights into applying artificial intelligence technology to smart classroom development.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] U-Net based convolutional neural network for skeleton extraction
    Panichev, Oleg
    Voloshyna, Alona
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, : 1186 - 1189
  • [2] Nanoparticle Segmentation Based on U-Net Convolutional Neural Network
    Zhang Fang
    Wu Yue
    Xiao Zhitao
    Geng Lei
    Wu Jun
    Liu Yanbei
    Wang Wen
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (06)
  • [3] Retinal Vessel Segmentation Algorithm Based on U-NET Convolutional Neural Network
    Zhang, Yun-Hao
    Wang, Jie-Sheng
    Zhang, Zhi-Hao
    ENGINEERING LETTERS, 2023, 31 (04) : 1837 - 1846
  • [4] Microaneurysms segmentation with a U-Net based on recurrent residual convolutional neural network
    Kou, Caixia
    Li, Wei
    Liang, Wei
    Yu, Zekuan
    Hao, Jianchen
    JOURNAL OF MEDICAL IMAGING, 2019, 6 (02)
  • [5] Optimized U-Net convolutional neural network based breast cancer prediction for accuracy increment in big data
    Kirola, Madhu
    Memoria, Minakshi
    Dumka, Ankur
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 35 (09):
  • [6] Machine Learning Using U-Net Convolutional Neural Networks for the Imaging of Sparse Seismic Data
    Huang, Jiayuan
    Nowack, Robert L.
    PURE AND APPLIED GEOPHYSICS, 2020, 177 (06) : 2685 - 2700
  • [7] Machine Learning Using U-Net Convolutional Neural Networks for the Imaging of Sparse Seismic Data
    Jiayuan Huang
    Robert L. Nowack
    Pure and Applied Geophysics, 2020, 177 : 2685 - 2700
  • [8] Denoising coherent Doppler lidar data based on a U-Net convolutional neural network
    Song, Yiming
    Han, Yuli
    Su, Zhaowang
    Chen, Chong
    Sun, Dongsong
    Chen, Tingdi
    Xue, Xianghui
    APPLIED OPTICS, 2024, 63 (01) : 275 - 282
  • [9] A modified U-Net convolutional neural network for segmenting periprostatic adipose tissue based on contour feature learning
    Wang, Gang
    Hu, Jinyue
    Zhang, Yu
    Xiao, Zhaolin
    Huang, Mengxing
    He, Zhanping
    Chen, Jing
    Bai, Zhiming
    HELIYON, 2024, 10 (03)
  • [10] Fast Calculation Method of Electromagnetic Field Based on U-Net Convolutional Neural Network
    Zhang Y.
    Zhao Z.
    Xu B.
    Sun H.
    Huang X.
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2024, 39 (09): : 2730 - 2742