Multiagent Hierarchical Reinforcement Learning With Asynchronous Termination Applied to Robotic Pick and Place

被引:1
|
作者
Lan, Xi [1 ]
Qiao, Yuansong [1 ]
Lee, Brian [1 ]
机构
[1] Technol Univ Shannon, Software Res Inst, Athlone N37 HD68, Ireland
来源
IEEE ACCESS | 2024年 / 12卷
基金
爱尔兰科学基金会;
关键词
Multi-agent system; pick and place; multi-agent-hierarchical reinforcement learning; multi-robot system; asynchronous termination; MULTIROBOT COORDINATION;
D O I
10.1109/ACCESS.2024.3409076
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recent breakthroughs in hierarchical multi-agent deep reinforcement learning (HMADRL) are propelling the development of sophisticated multi-robot systems, particularly in the realm of complex coordination tasks. These advancements hold significant potential for addressing the intricate challenges inherent in fast-evolving sectors such as intelligent manufacturing. In this study, we introduce an innovative simulator tailored for a multi-robot pick-and-place (PnP) operation, built upon the OpenAI Gym framework. Our aim is to demonstrate the efficacy of HMADRL algorithms for multi robot coordination in a manufacturing setting, concentrating on their influence on the gripping rate, a crucial indicator for gauging system performance and operational efficiency.
引用
收藏
页码:78988 / 79002
页数:15
相关论文
共 50 条
  • [1] Deep Reinforcement Learning Applied to a Robotic Pick-and-Place Application
    Gomes, Natanael Magno
    Martins, Felipe N.
    Lima, Jose
    Wortche, Heinrich
    OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, OL2A 2021, 2021, 1488 : 251 - 265
  • [2] Implementing Robotic Pick and Place with Non-visual Sensing Using Reinforcement Learning
    Imtiaz, Muhammad Babar
    Qiao, Yuansong
    Lee, Brian
    2022 6TH INTERNATIONAL CONFERENCE ON ROBOTICS, CONTROL AND AUTOMATION (ICRCA 2022), 2022, : 23 - 28
  • [3] Towards Hierarchical Task Decomposition using Deep Reinforcement Learning for Pick and Place Subtasks
    Marzari, Luca
    Pore, Ameya
    Dall'Alba, Diego
    Aragon-Camarasa, Gerardo
    Farinelli, Alessandro
    Fiorini, Paolo
    2021 20TH INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS (ICAR), 2021, : 640 - 645
  • [4] Reinforcement Learning for Pick and Place Operations in Robotics: A Survey
    Lobbezoo, Andrew
    Qian, Yanjun
    Kwon, Hyock-Ju
    ROBOTICS, 2021, 10 (03)
  • [5] Autonomous Robotic Reinforcement Learning with Asynchronous Human Feedback
    Balsells, Max
    Torne, Marcel
    Wang, Zihan
    Desai, Samedh
    Agrawal, Pulkit
    Gupta, Abhishek
    CONFERENCE ON ROBOT LEARNING, VOL 229, 2023, 229
  • [6] Hierarchical multiagent reinforcement learning schemes for air traffic management
    Spatharis, Christos
    Bastas, Alevizos
    Kravaris, Theocharis
    Blekas, Konstantinos
    Vouros, George A.
    Manuel Cordero, Jose
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (01): : 147 - 159
  • [7] Hierarchical Multiagent Reinforcement Learning for Allocating Guaranteed Display Ads
    Wang, Lu
    Han, Lei
    Chen, Xinru
    Li, Chengchang
    Huang, Junzhou
    Zhang, Weinan
    Zhang, Wei
    He, Xiaofeng
    Luo, Dijun
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (10) : 5361 - 5373
  • [8] UAV Swarm Confrontation Using Hierarchical Multiagent Reinforcement Learning
    Wang, Baolai
    Li, Shengang
    Gao, Xianzhong
    Xie, Tao
    INTERNATIONAL JOURNAL OF AEROSPACE ENGINEERING, 2021, 2021
  • [9] Hierarchical multiagent reinforcement learning schemes for air traffic management
    Christos Spatharis
    Alevizos Bastas
    Theocharis Kravaris
    Konstantinos Blekas
    George A. Vouros
    Jose Manuel Cordero
    Neural Computing and Applications, 2023, 35 : 147 - 159
  • [10] Simulated and Real Robotic Reach, Grasp, and Pick-and-Place Using Combined Reinforcement Learning and Traditional Controls
    Lobbezoo, Andrew
    Kwon, Hyock-Ju
    ROBOTICS, 2023, 12 (01)