Sustainability Improvement of Membrane Separation Process for Post-Combustion CO2 Capturing Using Multi-Objective Optimization

被引:0
|
作者
Asadi, Javad [1 ]
Kazempoor, Pejman [1 ]
机构
[1] Univ Oklahoma, Sch Aerosp & Mech Engn, Norman, OK 73019 USA
关键词
CO2; capture; membrane-based CO2 absorption; optimization; optimal design; CARBON-DIOXIDE CAPTURE; GAS; SYSTEMS; DESIGN;
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The membrane process is a promising technology for CO2 removal and mitigation. Since the energy consumption and economy of membrane-based carbon capture systems (CCSs) are critical for their large-scale deployments, optimal design and operation of such systems are the primary aims of this study. To achieve these research goals, a numerical model based on the solution-diffusion mechanism for the multicomponent gas separation process with a hollow-fiber membrane module is developed using Aspen Custom Modeler. The model is employed to investigate the effects of important operating and design parameters. Multi-objective process optimization is then performed by linking Aspen Plus and MATLAB and using an evolutionary technique to determine the optimal operating and design conditions. Our results show that by increasing the CO2 concentration in the feed gas, the CO2 capture cost significantly decreases and CO2 removal improves, although the process energy requirement slightly increases. The best achievable tradeoffs between objective functions are generated and analyzed, which substantiate the significant potential for improving the sustainability of the process. The results show that at optimum design and operating conditions, CO2 capture cost and energy consumption of the process could be as low as 13.1 $/tCO(2) and 61 MW, respectively. The results of this study provide valuable insights into membrane separation and can be used by decisionmakers to achieve the optimal performance of the process for commercial development and deployment of the technology.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Sustainability assessment in the CO2 capture process: Multi-objective optimization
    Gabriela Romero-Garcia, Ana
    Ramirez-Corona, Nelly
    Sanchez-Ramirez, Eduardo
    Alcocer-Garcia, Heriberto
    De Blasio, Cataldo
    Gabriel Segovia-Hernandez, Juan
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2022, 182
  • [2] Comparisons of amine solvents for post-combustion CO2 capture: A multi-objective analysis approach
    Lee, Anita S.
    Eslick, John C.
    Miller, David C.
    Kitchin, John R.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2013, 18 : 68 - 74
  • [3] Multivariable Optimization of the Piperazine CO2 Post-Combustion Process
    Gaspar, Jozsef
    von Solms, Nicolas
    Thomsen, Kaj
    Fosbol, Philip Loldrup
    8TH TRONDHEIM CONFERENCE ON CO2 CAPTURE, TRANSPORT AND STORAGE, 2016, 86 : 229 - 238
  • [4] Bi-objective optimization of post-combustion CO2 capture using methyldiethanolamine
    Hara, Nobuo
    Taniguchi, Satoshi
    Yamaki, Takehiro
    Nguyen, Thuy T. H.
    Kataoka, Sho
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2023, 122
  • [5] Post-combustion CO2:: separation and stocking
    Mariani, M.
    Air Pollution XIV, 2006, 86 : 785 - 791
  • [6] Hybrid membrane cryogenic process for post-combustion Co2 capture
    Belaissaoui, B.
    Le Moullec, Y.
    Willson, D.
    Favre, E.
    EUROMEMBRANE CONFERENCE 2012, 2012, 44 : 417 - 421
  • [7] Hybrid membrane cryogenic process for post-combustion CO2 capture
    Belaissaoui, Bouchra
    Le Moullec, Yann
    Willson, David
    Favre, Eric
    JOURNAL OF MEMBRANE SCIENCE, 2012, 415 : 424 - 434
  • [8] Optimization of solvent properties for post-combustion CO2 capture using process simulation
    Xin, Kun
    Gallucci, Fausto
    Annaland, Martin van Sint
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2020, 99
  • [9] Optimization of post-combustion CO2 process using DEA-MDEA mixtures
    Rodriguez, Nestor
    Mussati, Sergio
    Scenna, Nicolas
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2011, 89 (09): : 1763 - 1773
  • [10] Post-combustion CO2 capture with biomimetic membrane
    Thibaud-Erkey, Catherine
    Cordatos, Harry
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241