Communication-Efficient Distributed Orthogonal Approximate Message Passing for Sparse Signal Recovery

被引:0
|
作者
Hisanaga, Ken [1 ]
Isaka, Motohiko [1 ]
机构
[1] Kwansei Gakuin Univ, Dept Informat, Sanda 6691330, Japan
关键词
compressed sensing; orthogonal approximate message passing; communication cost;
D O I
10.1587/transfun.2023TAP0018
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we introduce a framework of distributed orthogonal approximate message passing for recovering sparse vector based on sensing by multiple nodes. The iterative recovery process consists of local computation at each node, and global computation performed either by a particular node or joint computation on the overall network by exchanging messages. We then propose a method to reduce the communication cost between the nodes while maintaining the recovery performance.
引用
收藏
页码:493 / 502
页数:10
相关论文
共 50 条
  • [1] Distributed Approximate Message Passing for Sparse Signal Recovery
    Han, Puxiao
    Niu, Ruixin
    Ren, Mengqi
    Eldar, Yonina C.
    [J]. 2014 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2014, : 497 - 501
  • [2] Sparse or Dense - Message Passing (MP) or Approximate Message Passing (AMP) for Compressed Sensing Signal Recovery
    Mahmood, Asad
    Kang, Jaewook, Jr.
    Lee, HeungNo
    [J]. 2013 IEEE PACIFIC RIM CONFERENCE ON COMMUNICATIONS, COMPUTERS AND SIGNAL PROCESSING (PACRIM), 2013, : 259 - 264
  • [3] More communication-efficient distributed sparse learning
    Zhou, Xingcai
    Yang, Guang
    [J]. INFORMATION SCIENCES, 2024, 668
  • [4] More communication-efficient distributed sparse learning
    Zhou, Xingcai
    Yang, Guang
    [J]. Information Sciences, 2024, 668
  • [5] SPARSE SIGNAL RECOVERY USING GENERALIZED APPROXIMATE MESSAGE PASSING WITH BUILT-IN PARAMETER ESTIMATION
    Huang, Shuai
    Tran, Trac D.
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 4321 - 4325
  • [6] Communication-efficient Distributed Sparse Linear Discriminant Analysis
    Tian, Lu
    Gu, Quanquan
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 54, 2017, 54 : 1178 - 1187
  • [7] Efficient Recovery of Structured Sparse Signals via Approximate Message Passing with Structured Spike and Slab Prior
    Meng, Xiangming
    Wu, Sheng
    Andersen, Michael Riis
    Zhu, Jiang
    Ni, Zuyao
    [J]. CHINA COMMUNICATIONS, 2018, 15 (06) : 1 - 17
  • [8] Efficient Recovery of Structured Sparse Signals via Approximate Message Passing with Structured Spike and Slab Prior
    Xiangming Meng
    Sheng Wu
    Michael Riis ANDersen
    Jiang Zhu
    Zuyao Ni
    [J]. China Communications, 2018, 15 (06) : 1 - 17
  • [9] A Communication-Efficient Model of Sparse Neural Network for Distributed Intelligence
    Sheng, Yiqiang
    Wang, Jinlin
    Zhao, Zhenyu
    [J]. 2016 IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (INFOCOM WKSHPS), 2016,
  • [10] Communication-efficient sparse composite quantile regression for distributed data
    Yaohong Yang
    Lei Wang
    [J]. Metrika, 2023, 86 : 261 - 283