PreDiff: Precipitation Nowcasting with Latent Diffusion Models

被引:0
|
作者
Gao, Zhihan [1 ]
Shi, Xingjian [2 ]
Han, Boran [3 ]
Wang, Hao [4 ]
Jin, Xiaoyong [5 ]
Maddix, Danielle [4 ]
Zhu, Yi [2 ]
Li, Mu [2 ]
Wang, Yuyang [4 ]
机构
[1] Hong Kong Univ Sci & Technol, Hong Kong, Peoples R China
[2] Boson AI, London, England
[3] AWS, Santa Clara, CA USA
[4] AWS AI Labs, Santa Clara, CA USA
[5] Amazon, Seattle, WA USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Earth system forecasting has traditionally relied on complex physical models that are computationally expensive and require significant domain expertise. In the past decade, the unprecedented increase in spatiotemporal Earth observation data has enabled data-driven forecasting models using deep learning techniques. These models have shown promise for diverse Earth system forecasting tasks. However, they either struggle with handling uncertainty or neglect domain-specific prior knowledge; as a result, they tend to suffer from averaging possible futures to blurred forecasts or generating physically implausible predictions. To address these limitations, we propose a two-stage pipeline for probabilistic spatiotemporal forecasting: 1) We develop PreDiff, a conditional latent diffusion model capable of probabilistic forecasts. 2) We incorporate an explicit knowledge alignment mechanism to align forecasts with domain-specific physical constraints. This is achieved by estimating the deviation from imposed constraints at each denoising step and adjusting the transition distribution accordingly. We conduct empirical studies on two datasets: N-body MNIST, a synthetic dataset with chaotic behavior, and SEVIR, a real-world precipitation nowcasting dataset. Specifically, we impose the law of conservation of energy in N-body MNIST and anticipated precipitation intensity in SEVIR. Experiments demonstrate the effectiveness of PreDiff in handling uncertainty, incorporating domain-specific prior knowledge, and generating forecasts that exhibit high operational utility.
引用
收藏
页数:36
相关论文
共 50 条
  • [1] Precipitation nowcasting with generative diffusion models
    Asperti, Andrea
    Merizzi, Fabio
    Paparella, Alberto
    Pedrazzi, Giorgio
    Angelinelli, Matteo
    Colamonaco, Stefano
    APPLIED INTELLIGENCE, 2025, 55 (02)
  • [2] Reliable precipitation nowcasting using probabilistic diffusion models
    Nai, Congyi
    Pan, Baoxiang
    Chen, Xi
    Tang, Qiuhong
    Ni, Guangheng
    Duan, Qingyun
    Lu, Bo
    Xiao, Ziniu
    Liu, Xingcai
    ENVIRONMENTAL RESEARCH LETTERS, 2024, 19 (03)
  • [3] Spacetime Separable Latent Diffusion Model With Intensity Structure Information for Precipitation Nowcasting
    Ling, Xudong
    Li, Chaorong
    Zhu, Lihong
    Qin, Fengqing
    Zhu, Ping
    Huang, Yuanyuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [4] Precipitation Nowcasting Using Diffusion Transformer With Causal Attention
    Li, Chaorong
    Ling, Xudong
    Xue, Yilan
    Luo, Wenjie
    Zhu, Lihong
    Qin, Fengqing
    Zhou, Yaodong
    Huang, Yuanyuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [5] Precipitation nowcasting with generative diffusion modelsPrecipitation nowcasting with generative diffusion modelsA. Asperti et al.
    Andrea Asperti
    Fabio Merizzi
    Alberto Paparella
    Giorgio Pedrazzi
    Matteo Angelinelli
    Stefano Colamonaco
    Applied Intelligence, 2025, 55 (3)
  • [6] Skilful precipitation nowcasting using deep generative models of radar
    Suman Ravuri
    Karel Lenc
    Matthew Willson
    Dmitry Kangin
    Remi Lam
    Piotr Mirowski
    Megan Fitzsimons
    Maria Athanassiadou
    Sheleem Kashem
    Sam Madge
    Rachel Prudden
    Amol Mandhane
    Aidan Clark
    Andrew Brock
    Karen Simonyan
    Raia Hadsell
    Niall Robinson
    Ellen Clancy
    Alberto Arribas
    Shakir Mohamed
    Nature, 2021, 597 : 672 - 677
  • [7] Precipitation Nowcasting Using Physics Informed Discriminator Generative Models
    Yin, Junzhe
    Meo, Cristian
    Roy, Ankush
    Cher, Zeineh Bou
    Lica, Mircea
    Wang, Yanbo
    Imhoff, Ruben
    Uijlenhoet, Remko
    Dauwels, Justin
    32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024, 2024, : 1967 - 1971
  • [8] Skillful Precipitation Nowcasting Using Physical-Driven Diffusion Networks
    Wang, Rui
    Fung, Jimmy C. H.
    Lau, Alexis K. H.
    Geophysical Research Letters, 2024, 51 (24)
  • [9] LLMDiff: Diffusion Model Using Frozen LLM Transformers for Precipitation Nowcasting
    She, Lei
    Zhang, Chenghong
    Man, Xin
    Shao, Jie
    SENSORS, 2024, 24 (18)
  • [10] Skilful precipitation nowcasting using deep generative models of radar
    Ravuri, Suman
    Lenc, Karel
    Willson, Matthew
    Kangin, Dmitry
    Lam, Remi
    Mirowski, Piotr
    Fitzsimons, Megan
    Athanassiadou, Maria
    Kashem, Sheleem
    Madge, Sam
    Prudden, Rachel
    Mandhane, Amol
    Clark, Aidan
    Brock, Andrew
    Simonyan, Karen
    Hadsell, Raia
    Robinson, Niall
    Clancy, Ellen
    Arribas, Alberto
    Mohamed, Shakir
    NATURE, 2021, 597 (7878) : 672 - +