Discovery of antimicrobial peptides in the global microbiome with machine learning

被引:57
|
作者
Santos-Junior, Celio Dias [1 ,2 ]
Torres, Marcelo D. T. [3 ,4 ,5 ,6 ,7 ,8 ]
Duan, Yiqian [1 ]
del Rio, Alvaro Rodriguez [9 ]
Schmidt, Thomas S. B. [10 ,11 ,12 ]
Chong, Hui [1 ]
Fullam, Anthony [10 ]
Kuhn, Michael [10 ]
Zhu, Chengkai [1 ]
Houseman, Amy [1 ]
Somborski, Jelena [1 ]
Vines, Anna [1 ]
Zhao, Xing-Ming [1 ,15 ,16 ,17 ,18 ]
Bork, Peer [10 ,13 ,14 ]
Huerta-Cepas, Jaime [9 ]
de la Fuente-Nunez, Cesar [3 ,4 ,5 ,6 ,7 ,8 ]
Coelho, Luis Pedro [1 ,19 ]
机构
[1] Fudan Univ, Inst Sci & Technol Brain Inspired Intelligence IST, Shanghai 200433, Peoples R China
[2] Univ Fed Sao Carlos UFSCar, Dept Hydrobiol, Lab Microbial Proc & Biodivers LMPB, BR-13565905 Sao Carlos, SP, Brazil
[3] Univ Penn, Machine Biol Grp, Dept Psychiat, Inst Biomed Informat,Inst Translat Med & Therapeut, Philadelphia, PA 19104 USA
[4] Univ Penn, Machine Biol Grp, Dept Microbiol, Inst Biomed Informat,Inst Translat Med & Therapeut, Philadelphia, PA 19104 USA
[5] Univ Penn, Sch Engn & Appl Sci, Dept Bioengn, Philadelphia, PA 19104 USA
[6] Univ Penn, Sch Engn & Appl Sci, Dept Chem & Biomol Engn, Philadelphia, PA 19104 USA
[7] Univ Penn, Sch Arts & Sci, Dept Chem, Philadelphia, PA 19104 USA
[8] Univ Penn, Penn Inst Computat Sci, Philadelphia, PA 19104 USA
[9] Univ Politecn Madrid UPM, Ctr Biotecnol & Genom Plantas, Inst Nacl Invest & Tecnol Agr & Alimentaria INIA C, Campus Montegancedo UPM, Pozuelo De Alarcon 28223, Madrid, Spain
[10] European Mol Biol Lab, Struct & Computat Biol Unit, Heidelberg, Germany
[11] Univ Coll Cork, APC Microbiome, Cork, Ireland
[12] Univ Coll Cork, Sch Med, Cork, Ireland
[13] Max Delbruck Ctr Mol Med, Berlin, Germany
[14] Univ Wurzburg, Dept Bioinformat, Bioctr, Wurzburg, Germany
[15] Fudan Univ, Zhongshan Hosp, Dept Neurol, Shanghai, Peoples R China
[16] Fudan Univ, Inst Brain Sci, State Key Lab Med Neurobiol, Shanghai, Peoples R China
[17] Fudan Univ, MOE Key Lab Computat Neurosci & Brain Inspired Int, Shanghai, Peoples R China
[18] Fudan Univ, MOE Frontiers Ctr Brain Sci, Shanghai, Peoples R China
[19] Queensland Univ Technol, Translat Res Inst, Ctr Microbiome Res, Sch Biomed Sci, Woolloongabba, Qld, Australia
基金
国家重点研发计划; 澳大利亚研究理事会; 中国国家自然科学基金; 美国国家卫生研究院;
关键词
AMINO-ACID ALPHABETS; AKKERMANSIA-MUCINIPHILA; GUT MICROBIOME; SMALL PROTEINS; GENERATION; REVEALS; RESISTANCE; GENES; IDENTIFICATION; BACTERIOCINS;
D O I
10.1016/j.cell.2024.05.013
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Novel antibiotics are urgently needed to combat the antibiotic-resistance crisis. We present a machinelearning-based approach to predict antimicrobial peptides (AMPs) within the global microbiome and leverage a vast dataset of 63,410 metagenomes and 87,920 prokaryotic genomes from environmental and host-associated habitats to create the AMPSphere, a comprehensive catalog comprising 863,498 nonredundant peptides, few of which match existing databases. AMPSphere provides insights into the evolutionary origins of peptides, including by duplication or gene truncation of longer sequences, and we observed that AMP production varies by habitat. To validate our predictions, we synthesized and tested 100 AMPs against clinically relevant drug-resistant pathogens and human gut commensals both in vitro and in vivo . A total of 79 peptides were active, with 63 targeting pathogens. These active AMPs exhibited antibacterial activity by disrupting bacterial membranes. In conclusion, our approach identified nearly one million prokaryotic AMP sequences, an open-access resource for antibiotic discovery.
引用
收藏
页码:3761 / 3778.e16
页数:35
相关论文
共 50 条
  • [1] Recent Progress in the Discovery and Design of Antimicrobial Peptides Using Traditional Machine Learning and Deep Learning
    Yan, Jielu
    Cai, Jianxiu
    Zhang, Bob
    Wang, Yapeng
    Wong, Derek F.
    Siu, Shirley W., I
    ANTIBIOTICS-BASEL, 2022, 11 (10):
  • [2] What can machine learning do for antimicrobial peptides, and what can antimicrobial peptides do for machine learning?
    Lee, Ernest Y.
    Lee, Michelle W.
    Fulan, Benjamin M.
    Ferguson, Andrew L.
    Wong, Gerard C. L.
    INTERFACE FOCUS, 2017, 7 (06)
  • [3] Using Evolutionary Algorithms and Machine Learning to Explore Sequence Space for the Discovery of Antimicrobial Peptides
    Yoshida, Mari
    Hinkley, Trevor
    Tsuda, Soichiro
    Abul-Haija, Yousef M.
    McBurney, Roy T.
    Kulikov, Vladislav
    Mathieson, Jennifer S.
    Reyes, Sabrina Galinanes
    Castro, Maria D.
    Cronin, Leroy
    CHEM, 2018, 4 (03): : 533 - 543
  • [4] Antimicrobial Peptides in the Global Microbiome: Biosynthetic Genes and Resistance Determinants
    Chen, Bingfeng
    Zhang, Zhenyan
    Zhang, Qi
    Xu, Nuohan
    Lu, Tao
    Wang, Tingzhang
    Hong, Wenjie
    Fu, Zhengwei
    Penuelas, Josep
    Gillings, Michael
    Qian, Haifeng
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2023, 57 (20) : 7698 - 7708
  • [5] Machine Learning in the Rational Design of Antimicrobial Peptides
    Rondon-Villarreal, Paola
    Sierra, Daniel A.
    Torres, Rodrigo
    CURRENT COMPUTER-AIDED DRUG DESIGN, 2014, 10 (03) : 183 - 190
  • [6] Machine learning in the rational design of antimicrobial peptides
    Rondón-Villarreal, Paola (nydia.rondon@correo.uis.edu.co), 1600, Bentham Science Publishers (10):
  • [7] Machine learning antimicrobial and cell penetrating peptides
    Wong, Gerard
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [8] Skin microbiome and antimicrobial peptides
    Zeeuwen, Patrick L. J. M.
    Grice, Elizabeth A.
    EXPERIMENTAL DERMATOLOGY, 2021, 30 (10) : 1362 - 1365
  • [9] Machine Learning-Driven Discovery and Evaluation of Antimicrobial Peptides from Crassostrea gigas Mucus Proteome
    Song, Jingchen
    Liu, Kelin
    Jin, Xiaoyang
    Huang, Ke
    Fu, Shiwei
    Yi, Wenjie
    Cai, Yijie
    Yu, Ziniu
    Mao, Fan
    Zhang, Yang
    MARINE DRUGS, 2024, 22 (09)
  • [10] Review of Machine Learning Prediction Algorithms for Antimicrobial Peptides
    Liu, Mingyou
    Liu, Hongmei
    Zhang, Zhaofang
    Zhu, Yingxue
    Huang, Jian
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2022, 51 (06): : 830 - 840