Mathematical modeling of dispersed CO2 dissolution in ionic liquids: Application to carbon capture

被引:1
|
作者
Amin, Parsa [1 ]
Memarian, Alireza [2 ]
Repo, Eveliina [1 ]
Andersson, Martin [4 ]
Mansouri, Seyed Soheil [5 ]
Zendehboudi, Sohrab [3 ]
Rezaei, Nima [1 ]
机构
[1] LUT Univ, LUT Sch Engn Sci, POB 20, Lappeenranta 53850, Finland
[2] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB, Canada
[3] Mem Univ, Dept Proc Engn, St John, NF, Canada
[4] King Fahd Univ Petr & Minerals, Ctr Integrat Petr Res, Dhahran, Saudi Arabia
[5] Tech Univ Denmark, Dept Chem & Biochem Engn, Lyngby, Denmark
关键词
Carbon capture; Ionic liquids; Sparging; CFD modelling; Computer-aided design; CO2; CAPTURE; PRE-COMBUSTION; SOLUBILITY; DENSITY; TRICYANOMETHANIDE; DIFFUSIVITY; COMPOSITE; MIXTURES; PRESSURE; SYSTEMS;
D O I
10.1016/j.molliq.2024.124486
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We develope a 2D computational fluid dynamic (CFD) model in COMSOL Multiphysics (R) to investigate CO2 absorption in an ionic liquid ([Bmim][TCM]). Factors such as pressure (1-20 bar), temperature (278-330 K), inlet gas velocity (0.0001-1 ms(-1) ), sparger radius to column diameter ratio (0.1-0.5), and column height to diameter ratio (1-3) are investigated. A quadratic model for absorption behavior (p-value < 0.0001 and R-2 > 0.98) is developed. Four sparger geometries are considered, and the optimal values for column height to diameter and sparger radius to column diameter are estimated. The maximum CO2 concentration is obtained at a pressure of 18.26 bar, temperature of 309.5 K, velocity of 0.825 ms(-1) , the sparger radius to column diameter of 0.414, and column height to diameter of 2.5.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Capture of CO2 by Ionic Liquids
    Zhou Lingyun
    Fan Jing
    Wang Jianji
    [J]. PROGRESS IN CHEMISTRY, 2011, 23 (11) : 2269 - 2275
  • [2] Application of ionic liquids in CO2 capture and electrochemical reduction: A review
    An, Xiaowei
    Wang, Peifen
    Ma, Xuli
    Du, Xiao
    Hao, Xiaogang
    Yang, Ziyuan
    Guan, Guoqing
    [J]. CARBON RESOURCES CONVERSION, 2023, 6 (02): : 85 - 97
  • [3] Encapsulated ionic liquids for CO2 capture
    Wang, Hongmin
    Zhu, Jiamei
    Tan, Liang
    Zhou, Min
    Zhang, Shuangquan
    [J]. MATERIALS CHEMISTRY AND PHYSICS, 2020, 251
  • [4] Ionic Liquids for CO2 Capture and Reduction
    Zakrzewska, Malgorzata E.
    [J]. C-JOURNAL OF CARBON RESEARCH, 2021, 7 (01):
  • [5] Designing ionic liquids for CO2 capture
    Dixon, JaNeille K.
    Muldoon, Mark J.
    Aki, Sudhir N. V. K.
    Anderson, Jessica L.
    Brennecke, Joan F.
    Maginn, Edward J.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231
  • [6] The potential of ionic liquids for CO2 capture
    Bandyopadhyay, Amitava
    [J]. GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2014, 4 (06): : 685 - 686
  • [7] Mathematical modeling and validation of CO2 mass transfer in a membrane contactor using ionic liquids for pre-combustion CO2 capture
    Usman, Muhammad
    Dai, Zhongde
    Hillestad, Magne
    Deng, Liyuan
    [J]. CHEMICAL ENGINEERING RESEARCH & DESIGN, 2017, 123 : 377 - 387
  • [8] CO2 capture by membrane absorption coupling process: Application of ionic liquids
    Lu, Jian-Gang
    Lu, Chun-Ting
    Chen, Yue
    Gao, Liu
    Zhao, Xin
    Zhang, Hui
    Xu, Zheng-Wen
    [J]. APPLIED ENERGY, 2014, 115 : 573 - 581
  • [9] Tuning Functionalized Ionic Liquids for CO2 Capture
    Zhang, Ruina
    Ke, Quanli
    Zhang, Zekai
    Zhou, Bing
    Cui, Guokai
    Lu, Hanfeng
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (19)
  • [10] Polymeric ionic liquids (PILs) for CO2 capture
    Sadeghpour, Mahsa
    Yusoff, Rozita
    Aroua, Mohamed Kheireddine
    [J]. REVIEWS IN CHEMICAL ENGINEERING, 2017, 33 (02) : 183 - 200