Best Proximity Points for Generalized (F, R)-proximal Contractions

被引:0
|
作者
Rawat, Shivam [1 ,2 ]
Bartwal, Ayush [3 ]
Dimri, R. C. [1 ]
机构
[1] HNB Garhwal Univ, Dept Math, Naur 246174, Uttarakhand, India
[2] Graphic Era Deemed Be Univ, Dept Math, Dehra Dun 248002, Uttarakhand, India
[3] Himwant Kavi Chandra Kunwar Bartwal Govt PG Coll, Dept Math, Nagnath Pokhari 246473, Uttarakhand, India
关键词
Best proximity point; generalized; (F; R )-proximal contractions; binary relation; THEOREMS;
D O I
10.5269/bspm.66414
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present the notion of generalized ( F, R ) -proximal non -self contractions and prove best proximity point theorems in complete metric spaces endowed with an arbitrary binary relation. An example is given to vindicate our claims. We also show that the edge preserving structure is a particular case of the binary relation R . Moreover, an application to variational inequality problem is given in order to demonstrate the efficacy of our results.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] On common best proximity points for generalized α - ψ-proximal contractions
    Aydi, Hassen
    Felhi, Abdelbasset
    Karapinar, Erdal
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (05): : 2658 - 2670
  • [2] Best proximity points for proximal generalized contractions in metric spaces
    Amini-Harandi, A.
    [J]. OPTIMIZATION LETTERS, 2013, 7 (05) : 913 - 921
  • [3] Best proximity points for proximal generalized contractions in metric spaces
    A. Amini-Harandi
    [J]. Optimization Letters, 2013, 7 : 913 - 921
  • [4] BEST PROXIMITY POINTS FOR PROXIMAL CONTRACTIONS
    Fernandez-Leon, Aurora
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2014, 15 (02) : 313 - 324
  • [5] BEST PROXIMITY POINTS OF GENERALIZED α-ψ-GERAGHTY PROXIMAL CONTRACTIONS IN GENERALIZED METRIC SPACES
    Amnuaykarn, K.
    Kumam, P.
    Sombut, K.
    Nantadilok, J.
    [J]. FIXED POINT THEORY, 2024, 25 (01): : 15 - 30
  • [6] Cyclic Coupled Best Proximity Points for Generalized Rational Proximal Contractions
    Balraj, D.
    Piramanantham, V.
    Marudai, M.
    [J]. RECENT TRENDS IN PURE AND APPLIED MATHEMATICS, 2019, 2177
  • [7] Best Proximity Points forWeak Proximal Contractions
    Gabeleh, Moosa
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2015, 38 (01) : 143 - 154
  • [8] Best Proximity Points for Weak Proximal Contractions
    Moosa Gabeleh
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2015, 38 : 143 - 154
  • [9] On best proximity points of interpolative proximal contractions
    Altun, Ishak
    Tasdemir, Aysenur
    [J]. QUAESTIONES MATHEMATICAE, 2021, 44 (09) : 1233 - 1241
  • [10] On the existence of best proximity points for generalized contractions
    Sultana, Asrifa
    Vetrivel, V.
    [J]. APPLIED GENERAL TOPOLOGY, 2014, 15 (01): : 55 - 63