Coordination engineering of defective F and N co-doped carbon dots anchored silver nanoparticles for boosting oxygen reduction reaction

被引:1
|
作者
Chu, Siyu [1 ]
Sun, Min [1 ,2 ]
Li, Zijiong [1 ,2 ]
Wang, Haiyan [1 ,3 ]
Miao, Feng [4 ]
机构
[1] Zhengzhou Univ Light Ind, Sch Elect & Informat, Zhengzhou 450002, Peoples R China
[2] Zhengzhou Univ Light Ind, Henan Key Lab Magnetoelect Informat Funct Mat, Zhengzhou 450002, Peoples R China
[3] Zhengzhou Univ Light Ind, Acad Quantum Sci & Technol, Zhengzhou 450002, Peoples R China
[4] Southwest Minzu Univ, Key Lab State Ethn Affairs Commiss Elect & Informa, Chengdu 610041, Peoples R China
基金
高等学校博士学科点专项科研基金;
关键词
Carbon dots; Oxygen reduction reaction; Catalyst; Co-doped; POROUS CARBON; CATALYST; PERFORMANCE;
D O I
10.1016/j.jallcom.2024.175256
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The carbon-based catalysts exhibit excellent electrocatalytic and stable performance toward oxygen reduction reaction (ORR), which are expected to replace expensive and scarce Pt-based catalysts. However, how to regulate the interaction between silver and carrier carbon dots (CD) to improve electrocatalytic performance toward oxygen reduction reaction (ORR) and stability, has not been systematically studied. In this study, we in-situ synthesized fluorine and nitrogen co-doped CD anchoring Ag nanoparticles by UV irradiation reduction method. The peak potential, onset-potential and half-wave potential of F, N-CD@Ag-0.1 are 0.85 V, 1.056 V, and 0.9 V, respectively, indicating outstanding ORR performance. The current density of F, N-CD@Ag-0.1 remains 97.5 % after 50, 000 s, showing more excellent stability than Pt/C. The impressive ORR catalytic activity and stability of F, N-CD@Ag-0.1 could be attributed to the strong anchoring effect of nitrogen-doped CD on Ag. This effect leads to a significant interaction and charge transfer between Ag and CD, thereby enhancing the charge transfer process during the catalytic reaction. This project aims to design a carbon dot/silver composite catalyst with high ORR catalytic performance and favorable stability. The implementation of this project provides good theoretical guidance for the design of carbon nanomaterial-based catalytic systems.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] N, S co-doped carbon film wrapped Co nanoparticles for boosting oxygen reduction reaction
    Huang, Kexin
    Hui, Yanxing
    Yang, Zhongyun
    Waqas, Muhammad
    Fan, Fangfang
    Wang, Limin
    Liu, Xiaotian
    Huang, Qiulan
    Huang, Dujuan
    Chen, Du-Hong
    Fan, Youjun
    Chen, Wei
    MOLECULAR CATALYSIS, 2023, 541
  • [2] Atomic Fe/Zn anchored N, S co-doped nano-porous carbon for boosting oxygen reduction reaction
    Liu, Dawei
    Srinivas, Katam
    Chen, Anran
    Ma, Fei
    Yu, Hesheng
    Zhang, Ziheng
    Wang, Mengya
    Wu, Yu
    Chen, Yuanfu
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 635 : 578 - 587
  • [3] Boron and nitrogen co-doped carbon dots for boosting electrocatalytic oxygen reduction
    Liu, Hui
    Liu, Zi-hui
    Zhang, Jin-qiang
    Zhi, Lin-jie
    Wu, Ming-bo
    NEW CARBON MATERIALS, 2021, 36 (03) : 585 - 592
  • [4] Highly Active and Stable Fe/Co/N Co-doped Carbon-Anchored Pd Nanoparticles for Oxygen Reduction Reaction
    Cui, Zelin
    Bai, Xuefeng
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (07) : 9024 - 9035
  • [5] Coordination Engineering of Defective Cobalt-Nitrogen-Carbon Electrocatalysts with Graphene Quantum Dots for Boosting Oxygen Reduction Reaction
    Geng, Di
    Huang, Yichao
    Yuan, Saifei
    Jiang, Yangyang
    Ren, Hao
    Zhang, Su
    Liu, Zheng
    Feng, Jing
    Wei, Tong
    Fan, Zhuangjun
    SMALL, 2023, 19 (18)
  • [6] Defective ZnS nanoparticles anchored in situ on N-doped carbon as a superior oxygen reduction reaction catalyst
    Libing Hu
    Zengxi Wei
    Feng Yu
    Huifang Yuan
    Mincong Liu
    Gang Wang
    Banghua Peng
    Bin Dai
    Jianmin Ma
    Journal of Energy Chemistry, 2019, (12) : 152 - 159
  • [7] Defective ZnS nanoparticles anchored in situ on N-doped carbon as a superior oxygen reduction reaction catalyst
    Hu, Libing
    Wei, Zengxi
    Yu, Feng
    Yuan, Huifang
    Liu, Mincong
    Wang, Gang
    Peng, Banghua
    Dai, Bin
    Ma, Jianmin
    JOURNAL OF ENERGY CHEMISTRY, 2019, 39 : 152 - 159
  • [8] Inherent mass transfer engineering of a Co, N co-doped carbon material towards oxygen reduction reaction
    Wang, Yanzhi
    Wang, Bin
    Yuan, Haitao
    Liang, Zuozhong
    Huang, Zhehao
    Zhou, Yuye
    Zhang, Wei
    Zheng, Haoquan
    Cao, Rui
    JOURNAL OF ENERGY CHEMISTRY, 2021, 58 : 391 - 396
  • [9] Inherent mass transfer engineering of a Co, N co-doped carbon material towards oxygen reduction reaction
    Yanzhi Wang
    Bin Wang
    Haitao Yuan
    Zuozhong Liang
    Zhehao Huang
    Yuye Zhou
    Wei Zhang
    Haoquan Zheng
    Rui Cao
    Journal of Energy Chemistry, 2021, 58 (07) : 391 - 396
  • [10] Boosting Zn-air battery performance: Fe single-atom anchored on F, N co-doped carbon nanosheets for efficient oxygen reduction
    Wang, Genxiang (gxwang@ujs.edu.cn); Wen, Zhenhai (wen@fjirsm.ac.cn), 1600, Elsevier Ltd (1010):